Back to Journals » Infection and Drug Resistance » Volume 11

Single-nucleotide polymorphisms related to fluoroquinolone and aminoglycoside resistance in Mycobacterium avium isolates

Authors Pang H, Wan K, Wei L

Received 27 December 2017

Accepted for publication 12 February 2018

Published 9 April 2018 Volume 2018:11 Pages 515—521


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 3

Editor who approved publication: Dr Sahil Khanna

Video abstract presented by Pang et al.

Views: 31

Hui Pang,1,2 Kanglin Wan,3 Lin Wei1

1Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; 2Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China; 3State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

Objective: The relationships between fluoroquinolone and aminoglycoside resistance and single-nucleotide polymorphisms (SNPs) in gyrA, gyrB, and rpsL genes were investigated in 95 clinical isolates of Mycobacterium avium from China.
Methods: Fluoroquinolone and aminoglycoside resistance were determined by the broth microdilution method. GyrA, gyrB, and rpsL were sequenced, SNPs were identified, and the corresponding amino acid mutations were recorded.
Results: The M. avium isolates displayed high levels of ofloxacin (93.68%), ciprofloxacin (92.63%), and streptomycin (65.26%) resistance. Moxifloxacin (18.95%) and amikacin (2.11%) were highly active against the strains. Fluoroquinolone resistance involving gyrA and gyrB gene mutations was identified. For gyrA, the most frequent SNPs were T→C (71/95, 74.74%), followed by A→G (64/95, 67.37%) and T→C (62/95, 65.26%). The amino acid mutations occurred mainly at Gly2444Asp (GGT→GAT) (20/95, 21.05%), Ala2445Ser (GCC→TCC) (20/95, 21.05%), Ala2447Val (GCC→GTC) (20/95, 21.05%), Val2449Ile (GTC→ATC) (20/95, 21.05%), and Glu2450Gln (GAA→CAA) (20/95, 21.05%). Prominent SNPs in gyrB included A→C (69/95, 72.63%), C→T (51/95, 53.68%), and T→G (29/95, 30.53%), and their amino acid substitutions were Ile2160Val (ATT→GTT) (21/95, 22.11%), Ile2160Met (ATT→ATG) (20/95, 21.05%), and Ile2273Leu (ATC→CTC) (11/95, 11.58%). Among the strains with aminoglycoside resistance, SNPs in rpsL were identified mostly at position G→A (73/95, 76.84%). G→C (21/95, 22.11%) was commonly seen. The amino acid mutations primarily involved Ala1539985Thr (GCC→ACC) (19/95, 20.00%), His1539992Asp (CAC→GAC) (19/95, 20.00%), and Gln1539983Glu (CAG→GAG) (18/95, 18.95%).
Conclusion: Our study provides valuable information that could be used for the future diagnosis and treatment of M. avium disease.

Mycobacterium avium, drug resistance, single-nucleotide polymorphism, amino acid mutation, minimum inhibitory concentration

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]