Back to Journals » International Journal of Nanomedicine » Volume 6

Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

Authors Nagy A, Harrison A, Sabbani S, Munson, Jr RS, Dutta P, Waldman WJ

Published 6 September 2011 Volume 2011:6 Pages 1833—1852

DOI https://doi.org/10.2147/IJN.S24019

Review by Single anonymous peer review

Peer reviewer comments 3



Amber Nagy1, Alistair Harrison2, Supriya Sabbani3, Robert S Munson, Jr2, Prabir K Dutta3, W James Waldman1
1Department of Pathology, The Ohio State University; 2Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, 3Department of Chemistry, The Ohio State University, Columbus, OH, USA

Background: The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM).
Methods and Results: These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity.
Conclusion: These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+.

Keywords: silver nanoparticles, zeolite, antibacterial agent, oxidative stress

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.