Back to Archived Journals » Cell Health and Cytoskeleton » Volume 3

Sarcomeric model of stretch-induced stress fiber reorganization

Authors Kaunas R, Hsu, Deguchi

Published 30 December 2010 Volume 2011:3 Pages 13—22


Review by Single anonymous peer review

Peer reviewer comments 2

Download Article [PDF] 

Roland Kaunas1, Hui-Ju Hsu1, Shinji Deguchi2
1Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; 2Department of Biomedical Engineering, Tohoku University, Sendai, Japan

Abstract: Actin stress fibers (SFs) are mechanosensitive structural elements that respond to applied stress and strain to regulate cell morphology, signal transduction, and cell function. Results from various studies indicate that SFs tend to maintain stress or strain at a constant level. We developed a simple quantitative sarcomeric model of SFs to predict the role of actomyosin crossbridge cycling in SF tension regulation and reorientation in response to cyclic stretching. Under static conditions, the steady-state levels of SF tension were determined by the fiber passive stiffness and the stall force of the constituent myosin II filaments. When subject to cyclic changes in length at low frequencies, SFs change their unloaded reference length levels through myosin sliding to maintain tension at the original level. At high stretch frequencies, myosin cannot respond quickly enough and the SF behaves elastically. Myosin sliding also contributes to SF turnover, resulting in SF reorientation away from the direction of stretching at high, but not low, stretch frequencies. Using model parameters extracted from the literature, our model describes the dependence of cyclic stretch-induced SF alignment on stretch frequency and pattern consistent with experimental findings. This analysis predicts that myosin II plays multiple roles in regulating the ability of SFs to adapt to a dynamic mechanical environment.

Keywords: mechanical stretch, cytoskeletal dynamics, myosin, mechanotransduction

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]