Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 11 » Issue 1

Relationship between vitamin D-binding protein polymorphisms and blood vitamin D level in Korean patients with COPD

Authors Park Y, Kim YS, Kang YA, Shin JH, Oh YM, Seo JB, Jung JY, Lee SD

Received 23 September 2015

Accepted for publication 1 February 2016

Published 7 April 2016 Volume 2016:11(1) Pages 731—738

DOI https://doi.org/10.2147/COPD.S96985

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Professor Hsiao-Chi Chuang

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Youngmok Park,1 Young Sam Kim,1 Young Ae Kang,1 Ju Hye Shin,1 Yeon Mok Oh,2 Joon Beom Seo,3 Ji Ye Jung,1 Sang Do Lee2

On behalf of the KOLD study

1Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, 2Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, 3Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Background: In chronic obstructive pulmonary disease (COPD), the blood vitamin D3 level is generally low, and genetic polymorphisms of vitamin D-binding protein encoded by the GC gene are associated with COPD development. In this study, we examined the relationship between GC polymorphisms and plasma vitamin D3 level in Korean patients with COPD.
Methods: The study included 175 COPD patients from the Korean Obstructive Lung Disease Cohort. Multivariate analysis was conducted with adjustment for age, body mass index (BMI), lung function, smoking status, smoking amount, and seasonal variation in blood vitamin D level. Vitamin D deficiency was defined as a plasma 25-hydroxyvitamin D3 level lower than 20 ng/mL.
Results: The mean plasma vitamin D3 level was 17.5 ng/mL. The GC1F variant (44.3%) and genotype 1F-2 (27.4%) were the most common. The plasma vitamin D3 level was lower in patients with the GC2 variant (estimated =-3.73 ng/mL) and higher in those with genotype 1F-1S (estimated =4.08 ng/mL). The GC2 variant was a significant risk factor for vitamin D deficiency (odds ratio =2.41). Among COPD clinical parameters, vitamin D deficiency was associated with a lower ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) regardless of GC polymorphisms. FEV1/FVC was higher in patients with genotype 1F-1F (estimated =3.61%) and lower in those with genotype 1F-2 (estimated =-3.31%). The 6-minute walking distance was shorter for patients with the GC1F variant (estimated =-38.91 m) and longer for those with the GC2 variant (estimated =26.98 m). The emphysema index was higher for patients with the GC1S variant (estimated =6.56%) and genotype 1F-1S (estimated =9.86%), regardless of the vitamin D level.
Conclusion: The GC2 variant is a risk factor for vitamin D deficiency, and genotype 1F-1S is a protective factor against vitamin D deficiency. GC polymorphisms and vitamin D deficiency correlate with clinical outcomes for Korean patients with COPD.

Keywords: vitamin D-binding protein, polymorphism, vitamin D, chronic obstructive pulmonary disease

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]