Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

Authors Qu Y, Zhang Q, Pan Q, Zhao X, Huang Y, Chen F, Chen H

Received 17 July 2014

Accepted for publication 29 September 2014

Published 9 December 2014 Volume 2014:9(1) Pages 5771—5778


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Lei Yang

Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen4

1Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of China

Background: Epidermal growth factor receptor (EGFR) mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC) patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R) have been developed, EGFR mutation detection by immunohistochemistry (IHC) is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC), to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS).
Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.
Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30); the specificity for both antibodies was 100.0% (26/26). IHC sensitivity was 80.0% (24/30) and the specificity was 92.31% (24/26). When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01). Excellent agreement was observed between IHC and ADx-ARMS when detecting EGFR mutations (κ=0.826; P<0.01).
Conclusion: QDs-IHC is a simple and standardized method to detect EGFR mutations with its high sensitivity and specificity, as compared with real-time polymerase chain reaction. In addition, the development of specific antibodies against EGFR mutation proteins might be useful for the diagnosis and treatment of lung cancer.

Keywords: quantum dots, lung cancer, EGFR, gene mutation, real-time PCR, immuno­histochemistry

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]