Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Non-ionic surfactant vesicles simultaneously enhance antitumor activity and reduce the toxicity of cantharidin

Authors Wei, Wang S, Rixin, Wang Y, Chen M, Li H, Wang Y

Received 1 February 2013

Accepted for publication 27 March 2013

Published 14 June 2013 Volume 2013:8(1) Pages 2187—2196


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Download Article [PDF] 

Wei Han,1,* Shengpeng Wang,2,* Rixin Liang,1 Lan Wang,1 Meiwan Chen,2 Hui Li,1 Yitao Wang1,2

1Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China; 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China

*These authors contributed equally to this work

Objective: The objective of the present study was to prepare cantharidin-entrapped non-ionic surfactant vesicles (CTD-NSVs) and evaluate their potential in enhancing the antitumor activities and reducing CTD’s toxicity.
Methods and results: CTD-NSVs were prepared by injection method. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis showed that CTD-NSVs could significantly enhance in vitro toxicity against human breast cancer cell line MCF-7 and induce more significant cell-cycle arrest in G0/G1 phase. Moreover, Hoechst 33342 staining implicated that CTD-NSVs induced higher apoptotic rates in MCF-7 cells than free CTD solution. In vivo therapeutic efficacy was investigated in imprinting control region mice bearing mouse sarcoma S180. Mice treated with 1.0 mg/kg CTD-NSVs showed the most powerful antitumor activity, with an inhibition rate of 52.76%, which was significantly higher than that of cyclophosphamide (35 mg/kg, 40.23%) and the same concentration of free CTD (1.0 mg/kg, 31.05%). In addition, the acute toxicity and liver toxicity of CTD were also distinctly decreased via encapsulating into NSVs.
Conclusion: Our results revealed that NSVs could be a promising delivery system for enhancing the antitumor activity and simultaneously reducing the toxicity of CTD.

Keywords: cantharidin, non-ionic surfactant vesicle, toxicity, antitumor activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]