Back to Journals » Local and Regional Anesthesia » Volume 1

Membrane interactivity of charged local anesthetic derivative and stereoselectivity in membrane interaction of local anesthetic enantiomers

Authors Tsuchiya H, Mizogami M

Published 6 August 2008 Volume 2008:1 Pages 1—9

DOI https://doi.org/10.2147/LRA.S3876

Review by Single anonymous peer review

Peer reviewer comments 3



Hironori Tsuchiya1, Maki Mizogami2

1Department of Dental Basic Education; 2Department of Anesthesiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan

Abstract: With respect to the membrane lipid theory as a molecular mechanism for local anesthetics, two critical subjects, the negligible effects of charged drugs when applied extracellularly and the stereoselective effects of enantiomers, were verified by paying particular attention to membrane components, phospholipids with the anionic property, and cholesterol with several chiral carbons. The membrane interactivities of structurally-different anesthetics were determined by their induced fluidity changes of liposomal membranes. Lidocaine (3.0 μmol/mL) fluidized phosphatidylcholine membranes, but not its quaternary derivative QX-314 (3.0 μmol/mL). Similarly to the mother molecule lidocaine, however, QX-314 fluidized phosphatidylserine-containing nerve cell model membranes and acidic phospholipids-constituting membranes depending on the acidity of membrane lipids. Positively charged local anesthetics are able to act on lipid bilayers by ion-pairing with anionic (acidic) phospholipids. Bupivacaine (0.75 mol/mL) and ropivacaine (0.75 and 1.0 μmol/mL) fluidized nerve cell model membranes with the potency being S(−)-enantiomer < racemate < R(+)-enantiomer (P < 0.01, vs antipode and racemate) and cardiac cell model membranes with the potency being S(−)-ropivacaine < S(−)-bupivacaine < R(+)-bupivacaine (P < 0.01). However, their membrane effects were not different when removing cholesterol from the model membranes. Stereoselectivity is producible by cholesterol which increases the chirality of lipid bilayers and enables to discriminate anesthetic enantiomers. The membrane lipid interaction should be reevaluated as the mode of action of local anesthetics.

Keywords: local anesthetics, membrane lipid interaction, quaternary derivative, enantiomers, membrane interactivity, stereoselectivity

Creative Commons License © 2008 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.