Back to Journals » International Journal of Nanomedicine » Volume 12

Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma

Authors Wang M, Geilich BM, Keidar M, Webster TJ

Received 2 December 2016

Accepted for publication 2 March 2017

Published 31 May 2017 Volume 2017:12 Pages 4117—4127

DOI https://doi.org/10.2147/IJN.S129266

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Thiruganesh Ramasamy

Peer reviewer comments 2

Editor who approved publication: Professor Israel (Rudi) Rubinstein


Mian Wang,1 Benjamin M Geilich,2 Michael Keidar,3 Thomas J Webster1,4

1Department of Chemical Engineering, 2Department of Bioengineering, Northeastern University, Boston, MA, 3Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA; 4Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China

Abstract: Traditional cancer treatments contain several limitations such as incomplete ablation and multidrug resistance. It is known that photodynamic therapy (PDT) is an effective treatment for several tumor types especially melanoma cells. During the PDT process, protoporphyrin IX (PpIX), an effective photosensitizer, can selectively kill cancer cells by activating a special light source. When tumor cells encapsulate a photosensitizer, they can be easily excited into an excited state by a light source. In this study, cold atmospheric plasma (CAP) was used as a novel light source. Results of some studies have showed that cancer cells can be effectively killed by using either a light source or an individual treatment due to the generation of reactive oxygen species and electrons from a wide range of wavelengths, which suggest that CAP can act as a potential light source for anticancer applications compared with UV light sources. Results of the present in vitro study indicated for the first time that PpIX can be successfully loaded into polymersomes. Most importantly, cell viability studies revealed that PpIX-loaded polymersomes had a low toxicity to healthy fibroblasts (20% were killed) at a concentration of 400 µg/mL, but they showed a great potential to selectively kill melanoma cells (almost 50% were killed). With the application of CAP posttreatment, melanoma cell viability significantly decreased (80% were killed) compared to not using a light source (45% were killed) or using a UV light source (65% were killed). In summary, these results indicated for the first time that PpIX-loaded polymersomes together with CAP posttreatment could be a promising tool for skin cancer drug delivery with selective toxicity toward melanoma cells sparing healthy fibroblasts.

Keywords: melanoma, polymersomes, protoporphyrin IX, cold atmospheric plasma, photodynamic therapy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]