Back to Journals » International Journal of Nanomedicine » Volume 14

Green synthesis of multifunctional PEG-carboxylate π back-bonded gold nanoconjugates for breast cancer treatment

Authors Gajendiran M, Jo H, Kim K, Balasubramanian S

Received 15 October 2018

Accepted for publication 13 December 2018

Published 25 January 2019 Volume 2019:14 Pages 819—834

DOI https://doi.org/10.2147/IJN.S190946

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo


Mani Gajendiran,1,2 Heejung Jo,2 Kyobum Kim,2 Sengottuvelan Balasubramanian1

1Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India; 2Division of Bioengineering, School of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea

Background: Surface functionalization of gold nanoparticles (AuNPs) has emerged as a promising field of research with enormous biomedical applications. The folate (FA)-attached polymer-gold nanoconjugates play vital role in targeting the cancer cells.
Methods: AuNPs were synthesized by using di- or tri-carboxylate-polyethylene glycol (PEG) polymers, including citrate-PEG (CPEG), malate-PEG (MAP), and tartrate-PEG (TAP), as a reducing and stabilizing agent. After synthesis of polymer-AuNPs, the freely available hydroxyl and carboxylate groups of CPEG, MAP, and TAP were used to attach a cancer cell-targeting agent, FA, via a 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide coupling reaction to obtain FA-CPEG-AuNP, FA-MAP-AuNP, and FA-TAP-AuNP nanoconjugates, respectively. The 5-fluorouracil (5FU) was attached to π back-bonded carbonyl oxygens of the nanoconjugates, and the in vitro drug release profile was studied by high pressure liquid chromatography. Biocompatibility profiles of the FA-CPEG-AuNP, FA-MAP-AuNP, and FA-TAP-AuNP nanoconjugates were investigated using adult human dermal fibroblasts. Anti-breast cancer activity of 5FU-loaded nanoconjugates was investigated using MCF-7 breast cancer cells.
Results: X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses confirmed that AuNPs attached to CPEG, MAP, or TAP via the formation of π back bonding between AuNPs and the ester carbonyl group. The π back-bonded nanoconjugates exhibited sustained release of 5FU up to 27 days. FA-MAP-AuNPs exhibited an IC50 at 5 µg/mL, while FA-CPEG-AuNPs and FA-TAP-AuNPs showed the IC50 at 100 µg/mL toward MCF-7 cancer cells.
Conclusion: The developed polymer π back-bonded multifunctional gold nanoconjugates could be used as a potential drug delivery system for targeting MCF-7 cancer cells.

Keywords: polymer-gold nanoconjugates, 5-fluorouracil, anticancer activity, MCF-7 cells, green synthesis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]