Back to Journals » Infection and Drug Resistance » Volume 13

Emergence of Methicillin-Resistant Staphylococcus aureus Belonging to Clonal Complex 15 (CC15-MRSA) in Kuwait Hospitals

Authors Udo EE, Boswihi SS, Mathew B, Noronha B, Verghese T, Al-Jemaz A, Al Saqer F

Received 5 November 2019

Accepted for publication 11 January 2020

Published 21 February 2020 Volume 2020:13 Pages 617—626

DOI https://doi.org/10.2147/IDR.S237319

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Suresh Antony


Edet E Udo, Samar S Boswihi, Bindu Mathew, Bobby Noronha, Tina Verghese, Aisha Al-Jemaz, Fatma Al Saqer

Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait

Correspondence: Edet E Udo
Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat 13110, Kuwait
Tel +965 498 36773
Fax +965 2533 2719
Email edet@hsc.edu.kw

Purpose: Methicillin-resistant S. aureus (MRSA) belonging to clonal complex 15 (CC15-MRSA) is rare among clinical isolates with few reports from retail camel meat and human patients. This study investigated the genetic relatedness of CC15-MRSA isolated for the first time from patients in Kuwait hospitals.
Methods: Antibiotic susceptibility was tested by the disk diffusion method. Minimum inhibitory concentration was determined using Etest strips. Molecular typing was performed using spa tying, multilocus sequence tying and DNA microarray.
Results: Of 1327 MRSA isolates, 42 (3.1%) were identified as CC15-MRSA. The 42 isolates belonged to sequence type ST1535-harbored SCCmec type V and spa types t084 (36 isolates), t346 (3 isolates) and one of t114, t228 and t7583. All 42 isolates were resistant to gentamicin, kanamycin, fusidic acid and cadmium acetate; 38 isolates were resistant to tetracycline. The isolates harbored aacA-aphD and fusC that codes for gentamicin and fusidic acid resistance, respectively. Tet(K) was present in the tetracycline-resistant isolates. In addition, the 42 isolates carried inu(A) (lincosamide nucleotidyltransferase) that confers resistance to lincomycin and clindamycin although phenotypically susceptible to these antibiotics. The isolates belonged to accessory gene regulator type II and capsular polysaccharide group 8 but lacked genes for Staphylococcus enterotoxins, toxic shock syndrome toxin, collagen-binding adhesins and Panton–Valentine leukocidin.
Conclusion: This study revealed the emergence and transmission of a previously rare MRSA clone among human patients in Kuwait hospitals and highlights the increasing infiltration of rare MRSA into the human population.

Keywords: DNA microarray, MRSA, antibiotic resistance, MLST


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]