Back to Journals » International Journal of Nanomedicine » Volume 6

Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles

Authors Han S, Chang YJ, Jung ES, Kim J, Na DL, Mook-Jung I

Published 15 December 2010 Volume 2011:6 Pages 1—12

DOI https://doi.org/10.2147/IJN.S15278

Review by Single anonymous peer review

Peer reviewer comments 3



Sun-Ho Han1, Yu Jin Chang1, Eun Sun Jung1, Jong-Won Kim2, Duk Lyul Na3, Inhee Mook-Jung1
1Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Jongro-gu, Seoul, Korea; 2Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Kangnam-Ku, Seoul, Korea; 3Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Kangnam-Ku, Seoul, Korea

Abstract: The abnormal aggregation of amyloid β (Aβ) and its subsequent intra- and extracellular accumulation constitute the disease-causing cascade of Alzheimer's disease (AD). The detection of Aβ aggregates and senile plaque formation, however, is nearly impossible during early pathogenesis, and the absence of a convenient screen to validate the activity of Aβ aggregation regulators impedes the development of promising drug targets and diagnostic biomarkers for AD. Here, we conjugated amyloid β42 (Aβ42) peptide to gold nanoparticles (AuNPs) to visualize Aβ42 aggregation via Aβ42 aggregation-induced AuNP precipitation. AuNP–Aβ42 precipitate was quantified by optical density measurements of supernatants and thioflavin T binding assay. Transmission electron microscopy (TEM) analysis also showed reduced interparticle distance of AuNPs and confirmed the Aβ42 aggregation-induced AuNP precipitation. Transthyretin, a widely known Aβ aggregation inhibitor, limited AuNP–Aβ42 precipitation by preventing Aβ42 aggregation. Finally, according to TEM analysis, Aβ42-conjugated AuNPs treated with blood-driven serum revealed the differentiated aggregation patterns between normal and AD. These findings may open a scientific breakthrough in finding a possible diagnostic and prognostic tool for neurodegenerative diseases involving abnormal protein aggregation as their key pathogenesis processes.

Keywords: transthyretin, Alzheimer's disease, diagnosis, amyloid β aggregation, gold nanoparticle

Creative Commons License © 2010 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.