Back to Journals » International Journal of Nanomedicine » Volume 6

Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles

Authors Han S, Chang YJ, Jung ES, Kim J, Na DL, Mook-Jung I

Published 15 December 2010 Volume 2011:6 Pages 1—12


Review by Single-blind

Peer reviewer comments 3

Sun-Ho Han1, Yu Jin Chang1, Eun Sun Jung1, Jong-Won Kim2, Duk Lyul Na3, Inhee Mook-Jung1
1Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Jongro-gu, Seoul, Korea; 2Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Kangnam-Ku, Seoul, Korea; 3Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Kangnam-Ku, Seoul, Korea

Abstract: The abnormal aggregation of amyloid β (Aβ) and its subsequent intra- and extracellular accumulation constitute the disease-causing cascade of Alzheimer's disease (AD). The detection of Aβ aggregates and senile plaque formation, however, is nearly impossible during early pathogenesis, and the absence of a convenient screen to validate the activity of Aβ aggregation regulators impedes the development of promising drug targets and diagnostic biomarkers for AD. Here, we conjugated amyloid β42 (Aβ42) peptide to gold nanoparticles (AuNPs) to visualize Aβ42 aggregation via Aβ42 aggregation-induced AuNP precipitation. AuNP–Aβ42 precipitate was quantified by optical density measurements of supernatants and thioflavin T binding assay. Transmission electron microscopy (TEM) analysis also showed reduced interparticle distance of AuNPs and confirmed the Aβ42 aggregation-induced AuNP precipitation. Transthyretin, a widely known Aβ aggregation inhibitor, limited AuNP–Aβ42 precipitation by preventing Aβ42 aggregation. Finally, according to TEM analysis, Aβ42-conjugated AuNPs treated with blood-driven serum revealed the differentiated aggregation patterns between normal and AD. These findings may open a scientific breakthrough in finding a possible diagnostic and prognostic tool for neurodegenerative diseases involving abnormal protein aggregation as their key pathogenesis processes.

Keywords: transthyretin, Alzheimer's disease, diagnosis, amyloid β aggregation, gold nanoparticle

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

Biris AR, Pruneanu S, Pogacean F, Lazar MD, Borodi G, Ardelean S, Dervishi E, Watanabe F, Biris AS

International Journal of Nanomedicine 2013, 8:1429-1438

Published Date: 12 April 2013

A novel POSS-coated quantum dot for biological application

Rizvi SB, Yildirimer L, Ghaderi S, Ramesh B, Seifalian AM, Keshtgar M

International Journal of Nanomedicine 2012, 7:3915-3927

Published Date: 2 August 2012

Protein encapsulation in polymeric microneedles by photolithography

Kochhar JS, Zou S, Chan SY, Kang L

International Journal of Nanomedicine 2012, 7:3143-3154

Published Date: 22 June 2012

Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

Galagudza M, Korolev D, Postnov V, Naumisheva E, Grigorova Y, Uskov I, Shlyakhto E

International Journal of Nanomedicine 2012, 7:1671-1678

Published Date: 13 April 2012

Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae

Fazaeli Y, Amini MM, Ashourion H, Heydari H, Majdabadi A, Jalilian AR, Abolmaali S

International Journal of Nanomedicine 2011, 6:3251-3257

Published Date: 12 December 2011

Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ

International Journal of Nanomedicine 2011, 6:2997-3009

Published Date: 24 November 2011

The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake

Chang WK, Tai YJ, Chiang CH, Hu CS, Hong PD, Yeh MK

International Journal of Nanomedicine 2011, 6:2403-2417

Published Date: 20 October 2011

Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm

Xie S, Pan B, Shi B, Zhang Z, Zhang X, Wang M, Zhou W

International Journal of Nanomedicine 2011, 6:2367-2374

Published Date: 18 October 2011