Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Comparison of three magnetic nanoparticle tracers for sentinel lymph node biopsy in an in vivo porcine model

Authors Pouw JJ, Ahmed M, Anninga B, Schuurman K, Pinder SE, Van Hemelrijck M, Pankhurst QA, Douek M, ten Haken B

Received 4 November 2014

Accepted for publication 11 December 2014

Published 11 February 2015 Volume 2015:10(1) Pages 1235—1243

DOI https://doi.org/10.2147/IJN.S76962

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Joost J Pouw,1,* Muneer Ahmed,2,* Bauke Anninga,2 Kimberley Schuurman,1 Sarah E Pinder,2 Mieke Van Hemelrijck,3 Quentin A Pankhurst,4,5 Michael Douek,2 Bennie ten Haken1

1MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands; 2Research Oncology, Division of Cancer Studies, King’s College London, Guy’s Hospital, London, UK; 3Cancer Epidemiology Group, Division of Cancer Studies, King’s College London, London, UK; 4Healthcare Biomagnetics Laboratory, University College London, London, UK; 5Institute of Biomedical Engineering, University College London, London, UK

*These authors contributed equally to this work

Introduction: Breast cancer staging with sentinel lymph node biopsy relies on the use of radioisotopes, which limits the availability of the procedure worldwide. The use of a magnetic nanoparticle tracer and a handheld magnetometer provides a radiation-free alternative, which was recently evaluated in two clinical trials. The hydrodynamic particle size of the used magnetic tracer differs substantially from the radioisotope tracer and could therefore benefit from optimization. The aim of this study was to assess the performance of three different-sized magnetic nanoparticle tracers for sentinel lymph node biopsy within an in vivo porcine model.
Materials and methods: Sentinel lymph node biopsy was performed within a validated porcine model using three magnetic nanoparticle tracers, approved for use in humans (ferumoxytol, with hydrodynamic diameter dH =32 nm; Sienna+®, dH =59 nm; and ferumoxide, dH =111 nm), and a handheld magnetometer. Magnetometer counts (transcutaneous and ex vivo), iron quantification (vibrating sample magnetometry), and histopathological assessments were performed on all ex vivo nodes.
Results: Transcutaneous “hotspots” were present in 12/12 cases within 30 minutes of injection for the 59 nm tracer, compared to 7/12 for the 32 nm tracer and 8/12 for the 111 nm tracer, at the same time point. Ex vivo magnetometer counts were significantly greater for the 59 nm tracer than for the other tracers. Significantly more nodes per basin were excised for the 32 nm tracer compared to other tracers, indicating poor retention of the 32 nm tracer. Using the 59 nm tracer resulted in a significantly higher iron accumulation compared to the 32 nm tracer.
Conclusion: The 59 nm tracer demonstrated rapid lymphatic uptake, retention in the first nodes reached, and accumulation in high concentration, making it the most suitable tracer for intraoperative sentinel lymph node localization.

Keywords: superparamagnetic iron oxide, breast cancer, magnetic tracer, ferumoxytol, ferumoxide, Sienna+®

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Monitoring cancer stem cells: insights into clinical oncology

Lin SC, Xu YC, Gan ZH, Han K, Hu HY, Yao Y, Huang MZ, Min DL

OncoTargets and Therapy 2016, 9:731-740

Published Date: 11 February 2016

BRAF mutation as a biomarker in colorectal cancer

Varghese AM, Saltz LB

Advances in Genomics and Genetics 2015, 5:347-353

Published Date: 15 October 2015

Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M

Drug Design, Development and Therapy 2015, 9:5215-5223

Published Date: 11 September 2015

Tracking the 2015 Gastrointestinal Cancers Symposium: bridging cancer biology to clinical gastrointestinal oncology

Aprile G, Leone F, Giampieri R, Casagrande M, Marino D, Faloppi L, Cascinu S, Fasola G, Scartozzi M

OncoTargets and Therapy 2015, 8:1149-1156

Published Date: 22 May 2015

Brachytherapy in the treatment of cervical cancer: a review

Banerjee R, Kamrava M

International Journal of Women's Health 2014, 6:555-564

Published Date: 28 May 2014

Palliative nursing care for children and adolescents with cancer

Foster TL, Bell CJ, McDonald CF, Harris JS, Gilmer MJ

Nursing: Research and Reviews 2012, 2:17-25

Published Date: 15 June 2012

Multidisciplinary care in pediatric oncology

Cantrell MA, Ruble K

Journal of Multidisciplinary Healthcare 2011, 4:171-181

Published Date: 30 May 2011

Use of electronic medical records in oncology outcomes research

Gena Kanas, Libby Morimoto, Fionna Mowat, et al

ClinicoEconomics and Outcomes Research 2010, 2:1-14

Published Date: 24 February 2010