Back to Journals » Neuropsychiatric Disease and Treatment » Volume 12

Cognitive deficits in patients with obsessive–compulsive disorder – electroencephalography correlates

Authors Kamaradova D, Hajda M, Prasko J, Taborsky J, Grambal A, Latalova K, Ociskova M, Brunovsky M, Hlustik P

Received 24 July 2015

Accepted for publication 14 January 2016

Published 6 May 2016 Volume 2016:12 Pages 1119—1125


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Roger Pinder

Dana Kamaradova,1,2 Miroslav Hajda,1,2 Jan Prasko,1,2 Jiri Taborsky,1,2 Ales Grambal,1,2 Klara Latalova,1,2 Marie Ociskova,1,2 Martin Brunovsky,3 Petr Hlustik4,5

1Department of Psychiatry, University Hospital Olomouc, 2Department of Psychiatry, Palacky University Olomouc, Olomouc, 3National Institute of Mental Health, Klecany, 4Department of Neurology, University Hospital Olomouc, 5Department of Neurology, Palacky University, Olomouc, Czech Republic

Background: Obsessive–compulsive disorder (OCD) is associated with cognitive dysfunction. Although there are several studies focused on the neurobiology of OCD, little is known about the biological correlates of the cognitive deficit linked to this disorder. The aim of our study was to examine the association between cognitive impairment and current source density markers in patients with OCD.
Methods: Resting-state eyes-closed electroencephalography (EEG) data were recorded in 20 patients with OCD and 15 healthy controls who were involved in the study. Cortical EEG sources were estimated by standardized low-resolution electromagnetic tomography in seven frequency bands: delta (1.5–6 Hz), theta (6.5–8 Hz), alpha-1 (8.5–10 Hz), alpha-2 (10.5–12 Hz), beta-1 (12.5–18 Hz), beta-2 (18.5–21 Hz), and beta-3 (21.5–30 Hz). Cognitive performance was measured by the Trail-Making Test (versions A and B), Stroop CW Test, and D2 Test.
Results: Frontal delta and theta EEG sources showed significantly higher activity in the whole group of patients with OCD (N=20) than in control subjects (N=15). Subsequent analysis revealed that this excess of low-frequency activity was present only in the subgroup of eleven patients with cognitive impairment (based on the performance in the Trail-Making Test – A). The subgroup of patients with normal cognitive functions (N=9) did not differ in cortical EEG sources from healthy controls.
Conclusion: The present results suggest that frontal low-frequency cortical sources of resting-state EEG rhythms can distinguish groups of cognitively impaired and cognitively intact patients with OCD. Based on our results, future studies should consider whether the present methodological approach provides clinically useful information for the revelation of cognitive impairment in patients with OCD.

Keywords: obsessive–compulsive disorder, electroencephalography, standardized low-resolution electromagnetic tomography, low-frequency sources, frontal areas

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]