Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 11 » Issue 1

Changes in respiratory function impairment following the treatment of severe pulmonary tuberculosis – limitations for the underlying COPD detection

Authors Radovic M, Ristic L, Ciric Z, Dinic-Radovic V, Stankovic I, Pejcic T, Rancic M, Bogdanovic D

Received 23 February 2016

Accepted for publication 31 March 2016

Published 16 June 2016 Volume 2016:11(1) Pages 1307—1316

DOI https://doi.org/10.2147/COPD.S106875

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Glenda Ernst

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Milan Radovic,1,2 Lidija Ristic,1,2 Zorica Ciric,1,2 Violeta Dinic-Radovic,3 Ivana Stankovic,1,2 Tatjana Pejcic,1,2 Milan Rancic,1,2 Dragan Bogdanovic4

1Department of Internal Medicine, Faculty of Medicine, University of Nis, 2Clinic for Lung Diseases, 3Clinic for Gastroenterology and Hepatology, Clinical Centre of Nis, 4Public Health Institute Nis, Nis, Republic of Serbia

Background: During the treatment phase of active pulmonary tuberculosis (PTB), respiratory function impairment is usually restrictive. This may become obstructive, as a PTB-associated airflow obstruction (AFO) or as a later manifestation of underlying COPD.
Purpose: The aim of the study was to examine the potential causes and risks for AFO development in PTB by exploring the aspects of spirometry limitations and clinical implications for the underlying COPD detection, taking into account various confounding factors.
Patients and methods: Prospective, nest case–control study on 40 new cases of PTB with initial restrictive respiratory function impairment, diagnosed and treated according to the directly observed treatment short course (DOTS) strategy.
Results: From all observed patients, 37.5% of them developed AFO upon the completion of PTB treatment, with significantly increased average of forced vital capacity (%) (P<0.01). Their changes in forced expiratory volume in the first second (%) during the PTB treatment were strongly associated with the air pollution exposure in living (0.474%–20.971% for 95% confidence interval [CI]; P=0.041) and working environments (3.928%–20.379% for 95% CI; P=0.005), initial radiological extent of PTB lesions (0.018%–0.700% for 95% CI; P=0.047), leukocyte count (0.020%–1.328% for 95% CI; P=0.043), and C-reactive protein serum level (0.046%–0.205% for 95% CI; P=0.003) compared to the other patients. The multivariate logistic regression analysis model shows initial radiological extent of pulmonary tuberculosis lesions (OR 1.01–1.05 for 95% CI; P=0.02) and sputum conversion rate on culture (OR 1.02–1.68 for 95% CI; P=0.04) as the most significant predictors for the risk of AFO development.
Conclusion: AFO upon PTB treatment is a common manifestation of underlying COPD, which mostly occurs later, during the reparative processes in active PTB, even in the absence of major risk factors, such as cigarette smoking and biomass fuel dust exposure. Initial spirometry testing in patients with active PTB is not a sufficient and accurate approach in the detection of underlying COPD, which may lead to their further potential health deterioration.

Keywords:
tuberculosis, pulmonary, respiratory function tests, lung diseases, obstructive

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]