Back to Journals » International Journal of Nanomedicine » Volume 7

Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

Authors Choi YJ, Lee JY, Pyoung Chung C, Park YJ

Received 12 March 2012

Accepted for publication 2 June 2012

Published 21 September 2012 Volume 2012:7 Pages 5091—5106


Review by Single anonymous peer review

Peer reviewer comments 3

Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,2

1Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea

*These authors contributed equally to this work

Background: Human dental pulp stem cells (DPSCs) have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1) was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP), and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.
Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.
Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.

Keywords: superoxide dismutase, senescence, oxidative stress, cell-penetrating peptide, dental pulp stem cell, osteoblastic differentiation

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.