Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating

Authors Dong F, Xie Y, Qi J, Hu F, Lu Y , Li S, Wu W 

Received 4 January 2013

Accepted for publication 16 February 2013

Published 26 April 2013 Volume 2013:8(1) Pages 1653—1663

DOI https://doi.org/10.2147/IJN.S42349

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Fuxia Dong,1,2 Yunchang Xie,1 Jianping Qi,1 Fuqiang Hu,3 Yi Lu,1 Sanming Li,2 Wei Wu1

1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, Shanghai, People’s Republic of China; 2School of Pharmacy, Shenyang Pharmaceutical University, Liaoning, People’s Republic of China; 3School of Pharmacy, Zhejiang University, Hangzhou, People’s Republic of China

Abstract: Bile salt/phospholipid mixed micelles (MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM) pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB) and sodium deoxycholate (SDC) were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG) 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3) and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3), respectively. Fluid-bed coating technology has considerable potential for use in preparing sodium deoxycholate/phospholipid preMM pellets, with enhanced oral bioavailability for poorly water-soluble drugs.

Keywords: mixed micelles, bile salts, phospholipids, fluid-bed coating, oral bioavailability

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.