Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

Authors FarrokhTakin E, Ciofani G, Puleo G, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

Received 23 March 2013

Accepted for publication 10 May 2013

Published 28 June 2013 Volume 2013:8(1) Pages 2319—2331


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 6

Download Article [PDF] 

Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1

1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy

Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice.

Keywords: barium titanate nanoparticles, gold nanoshells, NIR stimulation, human neuroblastoma

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]