Back to Journals » International Journal of Nanomedicine » Volume 15

An AFM-Based Nanomechanical Study of Ovarian Tissues with Pathological Conditions

Authors Ansardamavandi A, Tafazzoli-Shadpour M, Omidvar R, Nili F

Received 17 March 2020

Accepted for publication 2 June 2020

Published 19 June 2020 Volume 2020:15 Pages 4333—4350

DOI https://doi.org/10.2147/IJN.S254342

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo


Arian Ansardamavandi,1 Mohammad Tafazzoli-Shadpour,1 Ramin Omidvar,2 Fatemeh Nili3

1Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; 2Faculty of Biology, Centre for Biological Signalling Studies (BIOSS), Albert Ludwigs University Freiburg, Freiburg, Germany; 3Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran

Correspondence: Mohammad Tafazzoli-Shadpour
Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran
Tel +98 02164542385
Email Tafazoli@aut.ac.ir

Background: Different diseases affect both mechanical and chemical features of the involved tissue, enhancing the symptoms.
Methods: In this study, using atomic force microscopy, we mechanically characterized human ovarian tissues with four distinct pathological conditions: mucinous, serous, and mature teratoma tumors, and non-tumorous endometriosis. Mechanical elasticity profiles were quantified and the resultant data were categorized using K-means clustering method, as well as fuzzy C-means, to evaluate elastic moduli of cellular and non-cellular parts of diseased tissues and compare them among four disease conditions. Samples were stained by hematoxylin–eosin staining to further study the content of different locations of tissues.
Results: Pathological state vastly influenced the mechanical properties of the ovarian tissues. Significant alterations among elastic moduli of both cellular and non-cellular parts were observed. Mature teratoma tumors commonly composed of multiple cell types and heterogeneous ECM structure showed the widest range of elasticity profile and the stiffest average elastic modulus of 14 kPa. Samples of serous tumors were the softest tissues with elastic modulus of only 400 Pa for the cellular part and 5 kPa for the ECM. Tissues of other two diseases were closer in mechanical properties as mucinous tumors were insignificantly stiffer than endometriosis in cellular part, 1300 Pa compared to 1000 Pa, with the ECM average elastic modulus of 8 kPa for both.
Conclusion: The higher incidence of carcinoma out of teratoma and serous tumors may be related to the intense alteration of mechanical features of the cellular and the ECM, serving as a potential risk factor which necessitates further investigation.

Keywords: ovarian tumors, tissue elasticity, atomic force microscopy, cellular and extra cellular matrix components

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]