Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

Authors Qiu HZ, Wu NM, Zheng YJ, Chen M, Weng SH, Chen YZ, Lin XH

Received 31 May 2014

Accepted for publication 9 September 2014

Published 22 December 2014 Volume 2015:10(1) Pages 147—156

DOI https://doi.org/10.2147/IJN.S68638

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Dr Lei Yang

Huazhang Qiu,1,* Namei Wu,1,* Yanjie Zheng,1 Min Chen,2 Shaohuang Weng,1 Yuanzhong Chen,3 Xinhua Lin1

1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China; 2Department of Orthopedic Surgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China; 3Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China

*These authors contributed equally to this work

Abstract: A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience.

Keywords: fluorescence, turn-on, SYBR Green I, graphene oxide, multidrug resistance protein 1 gene, Hg2+

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Cognitive and psychological profiles in treatment compliance: a study in an elderly population with hemophilia

Riva S, Nobili A, Djade CD, Mancuso ME, Santagostino E, Pravettoni G

Clinical Interventions in Aging 2015, 10:1141-1146

Published Date: 9 July 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010