Back to Journals » International Journal of Nanomedicine » Volume 7

Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

Authors Guo H, Wei J, Song WH, Zhang S, Yan YG, Liu CS, Xiao TQ

Received 21 March 2012

Accepted for publication 28 April 2012

Published 11 July 2012 Volume 2012:7 Pages 3613—3624

DOI https://doi.org/10.2147/IJN.S32061

Review by Single-blind

Peer reviewer comments 3

Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao1

1Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China

Abstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC). The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC) were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.

Keywords: calcium phosphate cement, degradability, cell and tissue responses, biocompatibility

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice

Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X

International Journal of Nanomedicine 2012, 7:4809-4818

Published Date: 5 September 2012

Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer

Soster M, Juris R, Bonacchi S, Genovese D, Montalti M, Rampazzo E, Zaccheroni N, Garagnani P, Bussolino F, Prodi L, Marchiò S

International Journal of Nanomedicine 2012, 7:4797-4807

Published Date: 5 September 2012

Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

Elzatahry AA, Al-Enizi AM, Elsayed EA, Butorac RR, Al-Deyab SS, Wadaan MAM, Cowley AH

International Journal of Nanomedicine 2012, 7:2829-2832

Published Date: 7 June 2012

Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles

Tencomnao T, Klangthong K, Pimpha N, Chaleawlert-umpon S, Saesoo S, Woramongkolchai N, Saengkrit N

International Journal of Nanomedicine 2012, 7:2783-2792

Published Date: 1 June 2012

Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D

International Journal of Nanomedicine 2011, 6:2805-2819

Published Date: 9 November 2011

Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

Sirivisoot S, Harrison BS

International Journal of Nanomedicine 2011, 6:2483-2497

Published Date: 20 October 2011

Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D, Frerich B, Vollmar B, Gerber T

International Journal of Nanomedicine 2011, 6:1543-1552

Published Date: 2 August 2011