Back to Journals » Vascular Health and Risk Management » Volume 10

Vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition by mangosteen pericarp ethanolic extract (Garcinia mangostana Linn) in hypercholesterol-diet-given Rattus norvegicus Wistar strain

Authors Wihastuti T, Sargowo D, Tjokroprawiro A, Permatasari N, Widodo MA, Soeharto S, Hairani Siregar N

Received 1 February 2014

Accepted for publication 31 March 2014

Published 21 August 2014 Volume 2014:10 Pages 523—531


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Titin Andri Wihastuti,1 Djanggan Sargowo,2 Askandar Tjokroprawiro,3 Nur Permatasari,4 Mohammad Aris Widodo,4 Setyowati Soeharto4

1Department of Biomedical, Medical Faculty, Brawijaya University, Malang, Indonesia; 2Department of Cardiology, Medical Faculty, Brawijaya University, Malang, Indonesia; 3Department of Endocrinology, Medical Faculty, Airlangga University, Surabaya, Indonesia; 4Department of Pharmacology, Medical Faculty, Brawijaya University, Malang, Indonesia

Background: Oxidative stress in atherosclerosis produces H2O2 and triggers the activation of nuclear factor kappa beta (NF-κB) and increase of inducible nitric oxide synthase (iNOS). The formation of vasa vasorum occurs in atherosclerosis. Vasa vasorum angiogenesis is mediated by VEGFR-1 and upregulated by hypoxia-inducible factor-1α (HIF-1α). The newly formed vasa vasorum are fragile and immature and thus increase plaque instability. It is necessary to control vasa vasorum angiogenesis by using mangosteen pericarp antioxidant. This study aims to demonstrate that mangosteen pericarp ethanolic extract can act as vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition in rats given a hypercholesterol diet.
Methods: This was a true experimental laboratory, in vivo posttest with control group design, with 20 Rattus norvegicus Wistar strain rats divided into five groups (normal group, hypercholesterol group, and hypercholesterol groups with certain doses of mangosteen pericarp ethanolic extract: 200, 400, and 800 mg/kg body weight). The parameters of this study were H2O2 measured by using colorimetric analysis, as well as NF-κB, iNOS, and HIF-1α, which were measured by using immunofluorescence double staining and observed with a confocal laser scanning microscope in aortic smooth muscle cell. The angiogenesis of vasa vasorum was quantified from VEGFR-1 level in aortic tissue and confirmed with hematoxylin and eosin staining.
Results: Analysis of variance test and Pearson’s correlation coefficient showed mangosteen pericarp ethanolic extract had a significant effect (P<0.05) in decreasing vasa vasorum angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition in hypercholesterol-diet-given R. norvegicus Wistar strain.
Conclusion: Mangosteen pericarp ethanolic extract 800 mg/kg body weight is proven to decrease vasa vasorum angiogenesis. Similar studies with other inflammatory parameters are encouraged to clarify the mechanism of vasa vasorum angiogenesis inhibition by mangosteen pericarp ethanolic extract.

Keywords: mangosteen pericarp ethanolic extract, H2O2, HIF-1α, NF-κB, vasa vasorum angiogenesis, hypercholesterol

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]