Back to Journals » Clinical Ophthalmology » Volume 14

Trends in Glaucoma Filtration Procedures: A Retrospective Administrative Health Records Analysis Over a 13-Year Period in Canada

Authors Kansal V, Armstrong JJ, Hutnik CML

Received 29 September 2019

Accepted for publication 10 January 2020

Published 20 February 2020 Volume 2020:14 Pages 501—508

DOI https://doi.org/10.2147/OPTH.S232873

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser


Vinay Kansal,1 James J Armstrong,2,3 Cindy ML Hutnik2– 4

1University of Saskatchewan, Department of Ophthalmology, Saskatoon, SK, Canada; 2Western University Canada, Schulich School of Medicine, Department of Pathology and Laboratory Medicine, London, ON, Canada; 3Western University Canada, Schulich School of Medicine, Department of Ophthalmology, London, ON, Canada; 4Ivey Eye Institute, St. Joseph’s Hospital, London, ON, Canada

Correspondence: Cindy ML Hutnik
Ivey Eye Institute, St. Joseph’s Hospital, 268 Grosvenor Street, London, ON N6A 4V2, Canada
Tel +1 519-646-6100 Ext 66272
Fax +1 519-646-6410
Email cindy.hutnik@sjhc.london.on.ca

Background: Glaucoma surgical management has evolved significantly with the introduction of minimally invasive glaucoma surgery. Our aim was to evaluate trends in Canadian glaucoma surgery billing code usage as a surrogate index of the current impact of this new technology in Canada’s publicly funded health-care system.
Methods: Retrospective administrative health records analysis of all patients who underwent a publicly funded glaucoma filtration procedure from January 2003 to December 2016 in the 6 largest Canadian provinces. The frequency of glaucoma-related procedures was adjusted against primary open-angle glaucoma prevalence data. Frequency of all glaucoma filtration procedures with and without implantation of a drainage device in each province per year is reported.
Results: Nationwide, glaucoma filtration procedures per 1000 primary open-angle glaucoma patients per year remained constant, with increased drainage device implantation over time (P< 0.0001). Ontario and Nova Scotia mirrored the overall population. British Columbia and Saskatchewan showed increased rates of glaucoma filtration surgery, with increased drainage device implantations. In Quebec, overall filtration surgery decreased, while the rate of device implantation increased (p< 0.0001). Alberta showed a decline in filtration surgery and device implantations from 2003 to  2008, and then increased thereafter.
Conclusion: Over the study period, there was a distinct trend towards billing code usage for implanted devices. Challenges encountered during this investigation highlight the need for identifiers in provincial health databases to accommodate the introduction of novel technologies. The absence of specific billing codes for newer technologies prevents accurate analyses of impact, utilization, efficacy and cost implications in contemporary patient management.

Keywords: glaucoma, minimally invasive glaucoma surgery, MIGS, glaucoma filtration surgery, population analysis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]