Back to Journals » Clinical Ophthalmology » Volume 15

Time Utilization and Refractive Prediction Enhancement Associated with Intraoperative Aberrometry Use During Cataract Surgery

Authors Christopher KL, Patnaik JL, Ifantides C, Miller DC, Davidson RS, Taravella MJ, Lynch A, Wagner B

Received 26 October 2020

Accepted for publication 12 January 2021

Published 11 February 2021 Volume 2021:15 Pages 531—539

DOI https://doi.org/10.2147/OPTH.S287573

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Scott Fraser


Karen L Christopher,1 Jennifer L Patnaik,1 Cristos Ifantides,1 D Claire Miller,1 Richard S Davidson,1 Michael J Taravella,1 Anne Lynch,1 Brandie Wagner2

1University of Colorado Anschutz Medical Campus, Department of Ophthalmology, Aurora, CO, USA; 2Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA

Correspondence: Karen L Christopher 1675 Aurora Ct MS 731, Aurora, CO, 80045, USA
Tel +1 720-848-2508
Fax +1 720-848-5014
Email karen.christopher@cuanschutz.edu

Purpose: To evaluate the time cost of intraoperative aberrometry (IA), to compare IA prediction error to the prediction error associated with conventional formulas using preoperative calculations (PC) and evaluate when IA provides clinically relevant benefit.
Methods: This is a retrospective study of eyes that underwent cataract phacoemulsification surgery with IA at an academic eye center. IA versus PC prediction error were compared amongst various preoperative and intraoperative characteristics. Additionally, a dichotomous variable indicating clinically relevant benefit of IA, where IA absolute prediction error was less than 0.5D and PC absolute prediction error greater than 0.5D, was associated with clinical factors.
Results: Five hundred eyes of 341 patients were included in the analysis. The quantitative difference between mean absolute prediction errors for IA versus PC was between 0.0D and 0.03D in most subgroups. For the 11.0% of eyes that had clinically relevant benefit to IA, the multivariable model identified the following strongest predictors: prior myopic corneal refractive surgery (Odds ratio (OR) 3.9, p< 0.01 for myopic LASIK/PRK, OR 5.5, p=0.01 for radial keratotomy), toric or multifocal/EDOF lens implantation (OR 2.7, p=0.03 for toric monofocal lenses, OR 3.1, p=0.01 for EDOF/multifocal lenses), and short and long axial lengths (p< 0.01). On average, IA implementation added 3.0 minutes to surgery (p< 0.01).
Conclusion: For greatest likelihood of a clinically meaningful improvement in outcomes despite increased surgical time, surgeons and patients should consider using IA for eyes with extremes in axial length, eyes with prior myopic corneal refractive surgery, or when implanting lenses with toric or extended-depth-of-focus/multifocal properties.

Keywords: intraoperative aberrometry, IOL calculations, cataract refractive outcomes

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]