Back to Journals » International Journal of Nanomedicine » Volume 14

Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam)

Authors Farjadian F, Rezaeifard S, Naeimi M, Ghasemi S, Mohammadi-Samani S, Welland ME, Tayebi L

Received 4 May 2019

Accepted for publication 31 July 2019

Published 30 August 2019 Volume 2019:14 Pages 6901—6915

DOI https://doi.org/10.2147/IJN.S214467

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Melinda Thomas

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster


Fatemeh Farjadian,1 Somayeh Rezaeifard,2 Mahsa Naeimi,1 Sahar Ghasemi,1 Soliman Mohammadi-Samani,1,3 Mark E Welland,4 Lobat Tayebi5

1Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; 4The Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, United Kingdom; 5Marquette University, School of Dentistry, Milwaukee, WI, USA

Correspondence: Fatemeh Farjadian
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.C. 71348-14336, 
Shiraz, Iran
Tel +987132424127(302)
Fax +9871132424126
Email farjadian_f@sums.ac.ir

Lobat Tayebi
Marquette University, School of Dentistry, Milwaukee, WI 53233, USA
Tel +1 414 288 8383
Fax +2708971179
Email lobat.tayebi@marquette.edu
Website
tayebigroup.mu.edu

Background: Smart materials capable of responding to external stimuli are noteworthy candidates in designing drug delivery systems. In many of the recent research, temperature and pH have been recognized as the main stimulating factors in designing systems for anti-cancer drugs delivery systems.
Purpose: In this study, thermo and pH-responsive character of a nano-carrier drug delivery platform based on lysine modified poly (vinylcaprolactam) hydrogel conjugated with doxorubicin was assessed.
Methods: Poly (vinylcaprolactam) cross-linked with poly (ethyleneglycol) diacrylate was prepared via RAFT polymerization, and the prepared structure was linked with lysine through ring-opening. The anti-cancer drug doxorubicin, was linked to lysine moiety of the prepared structure via Schiff-base reaction. The prepared platform was characterized by 1,HNMR and FT-IR, while molecular weight characterization was performed by size exclusion chromatography. The temperature-responsive activity was evaluated using differential scanning calorimetry and dynamic light scattering. In vitro release pattern in simulated physiologic pH at 37°C was compared with acidic pH attributed to tumor site and elevated temperature. The anticancer efficiency of the drug-conjugated structure was evaluated in breast cancer cell line MCF-7 in 24 and 48 h, and cell uptake assay was performed on the same cell line.
Conclusion: According to the results, well-structure defined smart pH and temperature responsive nano-hydrogel was prepared. The enhanced release rates are observed at acidic pH and elevated temperature. We have concluded that the doxorubicin-conjugated nanoparticle results in higher cellular uptakes and more cytotoxicity.

Keywords: drug delivery, DOX, RAFT, PVCL, lysine, cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]