Back to Journals » International Journal of Nanomedicine » Volume 7

Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains

Authors Azam A, Ahmed AS, Oves M, Khan M, Memic A

Received 28 March 2012

Accepted for publication 28 April 2012

Published 10 July 2012 Volume 2012:7 Pages 3527—3535

DOI https://doi.org/10.2147/IJN.S29020

Review by Single anonymous peer review

Peer reviewer comments 3



Ameer Azam,1,2 Arham S Ahmed,2 M Oves,3 MS Khan,3 Adnan Memic1

1Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Center of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India

Background: CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Here we synthesized different sized CuO nanoparticles and explored the size-dependent antibacterial activity of each CuO nanoparticles preparation.
Methods: CuO nanoparticles were synthesized using a gel combustion method. In this approach, cupric nitrate trihydrate and citric acid were dissolved in distilled water with a molar ratio of 1:1. The resulting solution was stirred at 100°C, until gel was formed. The gel was allowed to burn at 200°C to obtain amorphous powder, which was further annealed at different temperatures to obtain different size CuO nanoparticles. We then tested the antibacterial properties using well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods.
Results: XRD spectra confirmed the formation of single phase CuO nanoparticles. Crystallite size was found to increase with an increase in annealing temperature due to atomic diffusion. A minimum crystallite size of 20 nm was observed in the case of CuO nanoparticles annealed at 400°C. Transmission electron microscopy results corroborate well with XRD results. All CuO nanoparticles exhibited inhibitory effects against both Gram-positive and -negative bacteria. The size of the particles was correlated with its antibacterial activity.
Conclusion: The antibacterial activity of CuO nanoparticles was found to be size-dependent. In addition, the highly stable minimum-sized monodispersed copper oxide nanoparticles synthesized during this study demonstrated a significant increase in antibacterial activities against both Gram-positive and -negative bacterial strains.

Keywords: CuO, nanoparticles, X-ray diffraction, FTIR, antimicrobial activity

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.