Back to Journals » International Journal of Nanomedicine » Volume 12

Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells

Authors Yang Q, Teng B, Wang L, Li K, Xu C, Ma X, Zhang Y, Kong D, Wang L, Zhao Y

Received 16 May 2017

Accepted for publication 29 July 2017

Published 11 September 2017 Volume 2017:12 Pages 6721—6733

DOI https://doi.org/10.2147/IJN.S141888

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun


Qiang Yang,1,* Bin-Hong Teng,2,* Li-Na Wang,3 Kun Li,2 Chen Xu,2 Xin-Long Ma,1 Yang Zhang,1 De-Ling Kong,3 Lian-Yong Wang,3 Yan-Hong Zhao2

1Department of Spine Surgery, Tianjin Hospital, Tianjin , People’s Republic of China; 2School and Hospital of Stomatology, Tianjin Medical University,Tianjin, People’s Republic of China; 3The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China

*These authors contributed equally to this work

Abstract: A 3-D scaffold that simulates the microenvironment in vivo for regenerating cartilage is ideal. In this study, we combined silk fibroin and decellularized cartilage extracellular matrix by temperature gradient-guided thermal-induced phase separation to produce composite scaffolds (S/D). Resulting scaffolds had remarkable mechanical properties and biomimeticstructure, for a suitable substrate for attachment and proliferation of adipose-derived stem cells (ADSCs). Moreover, transforming growth factor β3 (TGF-β3) loaded on scaffolds showed a controlled release profile and enhanced the chondrogenic differentiation of ADSCs during the 28-day culture. The S/D scaffold itself can provide a sustained release system without the introduction of other controlled release media, which has potential for commercial and clinical applications. The results of toluidine blue, Safranin O, and immunohistochemical staining and analysis of collagen II expression showed maintenance of a chondrogenic phenotype in all scaffolds after 28-day culture. The most obvious phenomenon was with the addition of TGF-β3. S/D composite scaffolds with sequential delivery of TGF-β3 may mimic the regenerative microenvironment to enhance the chondrogenic differentiation of ADSCs in vitro.

Keywords: cartilage tissue engineering, composite scaffold, silk fibroin, decellularized cartilage extracellular matrix, adipose-derived stem cells, transforming growth factor β3 (TGF-β3)

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]