Back to Journals » International Journal of Nanomedicine » Volume 15

Self-Assembling Peptides as an Emerging Platform for the Treatment of Metabolic Syndrome

Authors Castillo-Díaz LA, Ruiz-Pacheco JA, Elsawy MA, Reyes-Martínez JE, Enríquez-Rodríguez AI

Received 25 August 2020

Accepted for publication 21 October 2020

Published 21 December 2020 Volume 2020:15 Pages 10349—10370

DOI https://doi.org/10.2147/IJN.S278189

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster


Luis Alberto Castillo-Díaz,1 Juan Alberto Ruiz-Pacheco,2 Mohamed Ahmed Elsawy,3 Juana Elizabeth Reyes-Martínez,4 Andrea Isabel Enríquez-Rodríguez1

1Department of Medicine and Health Sciences, University of Sonora, Hermosillo, Sonora, Mexico; 2West Biomedical Research Center, National Council of Science and Technology, Guadalajara, Jalisco, Mexico; 3Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, Leicestershire, UK; 4Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico

Correspondence: Luis Alberto Castillo-Díaz
Department of Medicine and Health Sciences, University of Sonora, Hermosillo, Sonora 83000, Mexico
Tel +52 662 2592121
Ext. 4593 Email luis.castillo@unison.mx

Abstract: Metabolic syndrome comprises a cluster of comorbidities that represent a major risk of developing chronic diseases, such as type II diabetes, cardiovascular diseases, and stroke. Alarmingly, metabolic syndrome reaches epidemic proportions worldwide. Today, lifestyle changes and multiple drug-based therapies represent the gold standard to address metabolic syndrome. However, such approaches face two major limitations: complicated drug therapeutic regimes, which in most cases could lead to patient incompliance, and limited drug efficacy. This has encouraged scientists to search for novel routes to deal with metabolic syndrome and related diseases. Within such approaches, self-assembled peptide formulations have emerged as a promising alternative for treating metabolic syndrome. In particular, self-assembled peptide hydrogels, either as acellular or cell-load three-dimensional scaffoldings have reached significant relevance in the biomedical field to prevent and restore euglycemia, as well as for controlling cardiovascular diseases and obesity. This has been possible thanks to the physicochemical tunability of peptides, which are developed from a chemical toolbox of versatile amino acids enabling flexibility of designing a wide range of self-assembled/co-assembled nanostructures forming biocompatible viscoelastic hydrogels. Peptide hydrogels can be combined with several biological entities, such as extracellular matrix proteins, drugs or cells, forming functional biologics with therapeutic ability for treatment of metabolic syndrome-comorbidities. Additionally, self-assembly peptides combine safety, tolerability, and effectivity attributes; by this presenting a promising platform for the development of novel pharmaceuticals capable of addressing unmet therapeutic needs for diabetes, cardiovascular disorders and obesity. In this review, recent advances in developing self-assembly peptide nanostructures tailored for improving treatment of metabolic syndrome and related diseases will be discussed from basic research to preclinical research studies. Challenges facing the development of approved medicinal products based on self-assembling peptide nanomaterials will be discussed in light of regulatory requirement for clinical authorization.

Keywords: peptide, hydrogel, nanomaterials, metabolic syndrome, diabetes, obesity, cardiovascular disease

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]