Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

Authors Xia Y, Zhou PY, Cheng XS, Xie Y, Liang C, Li C, Xu SG

Received 28 June 2013

Accepted for publication 24 August 2013

Published 1 November 2013 Volume 2013:8(1) Pages 4197—4213

DOI https://doi.org/10.2147/IJN.S50685

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Yan Xia,1,* Panyu Zhou,1,* Xiaosong Cheng,1,* Yang Xie,1,* Chong Liang,2 Chao Li,1 Shuogui Xu1,2

1Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Neurosurgery, The 81 Hospital of People's Liberation Army of China, Nanjing, People's Republic of China

*These authors contributed equally to this work

Abstract: The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery.

Keywords: osseous defects, orthopedic surgery, biomimetic composite scaffold, reconstructive surgery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

NanoDisk containing super aggregated amphotericin B: a high therapeutic index antifungal formulation with enhanced potency

Burgess BL, He Y, Baker MM, Luo B, Carroll SF, Forte TM, Oda MN

International Journal of Nanomedicine 2013, 8:4733-4743

Published Date: 12 December 2013

Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature

Azam A, Habib SS, Salah NA, Ahmed F

International Journal of Nanomedicine 2013, 8:3875-3882

Published Date: 9 October 2013

Bioengineering in the oral cavity: our experience

Catalfamo L, Belli E, Nava C, Mici E, Calvo A, D'Alessandro B, De Ponte FS

International Journal of Nanomedicine 2013, 8:3883-3886

Published Date: 9 October 2013

Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

Afzal E, Zakeri S, Keyhanvar P, Bagheri M, Mahjoubi P, Asadian M, Omoomi N, Dehqanian M, Ghalandarlaki N, Darvishmohammadi T, Farjadian F, Golvajoee MS, Afzal S, Ghaffari M, Cohan RA, Gravand A, Ardestani MS

International Journal of Nanomedicine 2013, 8:2943-2960

Published Date: 8 August 2013

Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice

Chen J, Wang H, Long W, Shen X, Wu D, Song SS, Sun YM, Liu PX, Fan S, Fan F, Zhang XD

International Journal of Nanomedicine 2013, 8:2409-2419

Published Date: 4 July 2013

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

FarrokhTakin E, Ciofani G, Puleo GL, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

International Journal of Nanomedicine 2013, 8:2319-2331

Published Date: 28 June 2013

Enhanced in vivo osteogenesis by nanocarrier-fused bone morphogenetic protein-4

Shiozaki Y, Kitajima T, Mazaki T, Yoshida A, Tanaka M, Umezawa A, Nakamura M, Yoshida Y, Ito Y, Ozaki T, Matsukawa A

International Journal of Nanomedicine 2013, 8:1349-1360

Published Date: 9 April 2013

Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine

Tan Q, He D, Wu M, Yang L, Ren Y, Liu J, Zhang J

International Journal of Nanomedicine 2013, 8:477-484

Published Date: 1 February 2013

Erratum - Intracellular heavy metal nanoparticle storage

Iannitti T, Capone S, Gatti A, et al

International Journal of Nanomedicine 2011, 6:239-240

Published Date: 26 January 2011