Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Portable microfluidic chip for detection of Escherichia coli in produce and blood

Authors Wang S, Inci F, Chaunzwa TL, Ramanujam A, Vasudevan A, Subramanian S, Ip AC, Sridharan B, Gurkan UA, Demirci U

Received 1 January 2012

Accepted for publication 24 January 2012

Published 29 May 2012 Volume 2012:7 Pages 2591—2600

DOI http://dx.doi.org/10.2147/IJN.S29629

Review by Single-blind

Peer reviewer comments 6

ShuQi Wang,1* Fatih Inci,1* Tafadzwa L Chaunzwa,1 Ajay Ramanujam,1 Aishwarya Vasudevan,1 Sathya Subramanian,1 Alexander Chi Fai Ip,1 Banupriya Sridharan,1 Umut Atakan Gurkan,1 Utkan Demirci,1,2
1
Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, 2Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA,

*These authors contributed equally to this work

Abstract: Pathogenic agents can lead to severe clinical outcomes such as food poisoning, infection of open wounds, particularly in burn injuries and sepsis. Rapid detection of these pathogens can monitor these infections in a timely manner improving clinical outcomes. Conventional bacterial detection methods, such as agar plate culture or polymerase chain reaction, are time-consuming and dependent on complex and expensive instruments, which are not suitable for point-of-care (POC) settings. Therefore, there is an unmet need to develop a simple, rapid method for detection of pathogens such as Escherichia coli. Here, we present an immunobased microchip technology that can rapidly detect and quantify bacterial presence in various sources including physiologically relevant buffer solution (phosphate buffered saline [PBS]), blood, milk, and spinach. The microchip showed reliable capture of E. coli in PBS with an efficiency of 71.8% ± 5% at concentrations ranging from 50 to 4,000 CFUs/mL via lipopolysaccharide binding protein. The limits of detection of the microchip for PBS, blood, milk, and spinach samples were 50, 50, 50, and 500 CFUs/mL, respectively. The presented technology can be broadly applied to other pathogens at the POC, enabling various applications including surveillance of food supply and monitoring of bacteriology in patients with burn wounds.

Keywords: Escherichia coli, microchip, sepsis, food safety, point-of-care

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] View Full Text [HTML] 

 

Other article by this author:

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

International Journal of Nanomedicine 2012, 7:5019-5028

Published Date: 17 September 2012

Readers of this article also read:

Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles

Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gilliland D, Valsami-Jones E, Migliore L

International Journal of Nanomedicine 2014, 9:2191-2204

Published Date: 8 May 2014

Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole

Hu XJ, Liu Y, Zhou XF, Zhu QL, Bei YY, You BG, Zhang CG, Chen WL, Wang ZL, Zhu AJ, Zhang XN, Fan YJ

International Journal of Nanomedicine 2013, 8:3543-3558

Published Date: 20 September 2013

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

FarrokhTakin E, Ciofani G, Puleo GL, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

International Journal of Nanomedicine 2013, 8:2319-2331

Published Date: 28 June 2013

Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine

Tan Q, He D, Wu M, Yang L, Ren Y, Liu J, Zhang J

International Journal of Nanomedicine 2013, 8:477-484

Published Date: 1 February 2013

Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J

International Journal of Nanomedicine 2012, 7:5881-5888

Published Date: 28 November 2012

Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity

Leite EA, Souza CM, Carvalho-Júnior AD, Coelho LG, Lana AM, Cassali GD, Oliveira MC

International Journal of Nanomedicine 2012, 7:5259-5269

Published Date: 9 October 2012

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

International Journal of Nanomedicine 2012, 7:5019-5028

Published Date: 17 September 2012

Molecular network topology and reliability for multipurpose diagnosis

Jalil MA, Moongfangklang N, Innate K, Mitatha S, Ali J, Yupapin PP

International Journal of Nanomedicine 2011, 6:2385-2392

Published Date: 19 October 2011

Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles

Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z

International Journal of Nanomedicine 2011, 6:2321-2326

Published Date: 18 October 2011