Back to Journals » International Journal of Nanomedicine » Volume 12

Polymer–lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells

Authors Li J, Xu WQ, Yuan XL, Chen HW, Song H, Wang BQ, Han J

Received 16 June 2017

Accepted for publication 16 August 2017

Published 18 September 2017 Volume 2017:12 Pages 6909—6921

DOI https://doi.org/10.2147/IJN.S144184

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Thiruganesh Ramasamy

Peer reviewer comments 2

Editor who approved publication: Professor Dongwoo Khang


Jun Li,1,* Wenqing Xu,2,* Xiaoli Yuan,3,* Huaiwen Chen,3 Hao Song,1,4 Bingquan Wang,5 Jun Han5

1College of Pharmacy, Liaocheng University, Liaocheng, Shandong, 2Railway Police College, Zhengzhou, 3Department of Cadre Health Care, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu, 4Centre for Stem Cell & Regenerative Medicine, Liaocheng People’s Hospital, 5Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China

*These authors contributed equally to this work

Purpose: Breast cancer stem cells (CSCs) are responsible for the initiation, recurrence, and metastasis of breast cancer. Sufficient evidence has established that breast cancer cells can spontaneously turn into breast CSCs. Thus, it is essential to simultaneously target breast CSCs and cancer cells to maximize the efficacy of breast cancer therapy. HER2 has been found to be overexpressed in both breast CSCs and cancer cells. We developed salinomycin-loaded polymer–lipid hybrid anti-HER2 nanoparticles (Sali-NP-HER2) to target both HER2-positive breast CSCs and cancer cells.
Methods: The antitumor activity of Sali-NP-HER2 constructed by conjugating anti-HER2 antibodies to polymer–lipid salinomycin nanoparticles was evaluated in vitro and in vivo.
Results: Sali-NP-HER2 efficiently bound to HER2-positive breast CSCs and cancer cells, resulting in enhanced cytotoxic effects compared with non-targeted nanoparticles or salinomycin. In mice bearing breast cancer xenografts, administration of Sali-NP-HER2 exhibited superior efficacy in inhibiting tumor growth. Sali-NP-HER2 reduced the breast tumorsphere formation rate and the proportion of breast CSCs more effectively than non-targeted nanoparticles or salinomycin alone.
Conclusion: Sali-NP-HER2 represents a promising approach in treating HER2-positive breast cancer by targeting both breast CSCs and cancer cells.

Keywords: nanoparticles, breast cancer, cancer stem cells, salinomycin, HER2

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]