Back to Journals » International Journal of Nanomedicine » Volume 11

Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood–brain barrier model

Authors Shi D, Mi G, Bhattacharya S, Nayar S, Webster TJ

Received 12 March 2016

Accepted for publication 2 July 2016

Published 17 October 2016 Volume 2016:11 Pages 5371—5379

DOI https://doi.org/10.2147/IJN.S108333

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 2

Editor who approved publication: Professor Carlos Rinaldi

Di Shi,1 Gujie Mi,1 Soumya Bhattacharya,2 Suprabha Nayar,2 Thomas J Webster1,3

1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Materials Science and Technology Division, Council for Scientific and Industrial Research-National Metallurgical Laboratory, Jamshedpur, India; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract: In the current study, an optimized in vitro blood–brain barrier (BBB) model was established using mouse brain endothelial cells (b.End3) and astrocytes (C8-D1A). Before measuring the permeability of superparamagnetic iron oxide nanoparticle (SPION) samples, the BBB was first examined and confirmed by an immunofluorescent stain and evaluating the transendothelial electrical resistance. After such confirmation, the permeability of the following five previously synthesized SPIONs was determined using this optimized BBB model: 1) GGB (synthesized using glycine, glutamic acid, and bovine serum albumin [BSA]), 2) GGC (glycine, glutamic acid, and collagen), 3) GGP (glycine, glutamic acid, and polyvinyl alcohol), 4) BPC (BSA, polyethylene glycol, and collagen), and 5) CPB (collagen, polyvinyl alcohol, and BSA). More importantly, after the permeability test, transmission electron microscopy thin section technology was used to investigate the mechanism behind this process. Transmission electron microscopy thin section images supported the hypothesis that collagen-coated CPB SPIONs displayed better cellular uptake than glycine and glutamine acid-coated GGB SPIONs. Such experimental data demonstrated how one can modify SPIONs to better deliver drugs to the brain to treat a wide range of neurological disorders.

Keywords: superparamagnetic iron oxide nanoparticles, blood–brain barrier, permeability

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]