Back to Journals » Clinical Interventions in Aging » Volume 10

Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

Authors Jung H, Chun KJ, Hong J, Lim D

Received 23 June 2015

Accepted for publication 29 August 2015

Published 14 October 2015 Volume 2015:10 Pages 1645—1652


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Richard Walker

HoHyun Jung,1 Keyoung Jin Chun,2 Jaesoo Hong,2 Dohyung Lim1

1Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea; 2Smart Welfare Technology Research Group, Korea Institute of Industrial Technology, Cheonan, Republic of Korea

Abstract: Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P<0.05). The maximum was greater with anterior–posterior and medial–lateral dynamic rotation than with that in other directions (P<0.05). However, there were no statistically significant differences in the frequency of center of body mass deviations from the base of support (P>0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics.

Keywords: optimized strategy, balance rehabilitation training, balance characteristics, maximum deviation, deviation frequency

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]