Back to Journals » International Journal of Nanomedicine » Volume 12

Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis

Authors Lee H, Kim C, Lee D, Park JH, Searson PC, Lee KH

Received 27 March 2017

Accepted for publication 13 May 2017

Published 12 June 2017 Volume 2017:12 Pages 4397—4407

DOI https://doi.org/10.2147/IJN.S138081

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster


Hyojin Lee,1,* Chloe Kim,2,* Dongjin Lee,1,3,* Jea Ho Park,1,2 Peter C Searson,2 Kwan Hyi Lee1,3

1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; 2Department of Materials Science and Engineering, 3Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea

*These authors contributed equally to this work

Abstract: Recent studies have found that prostate cancer expresses abnormal genetic markers including multiple types of TMPRSS2–ERG fusion genes. The expression level of different TMPRSS2–ERG fusion genes is correlated to pathologic variables of aggressive prostate cancer and disease progression. State-of-the-art methods for detection of TMPRSS2–ERG fusion genes include reverse transcription polymerase chain reaction (RT-PCR) with a detection limit of 1 fmol at urinary condition. RT-PCR is time consuming, costly, and inapplicable for multiplexing. Ability to identify multiple fusion genes in a single sample has become important for diagnostic and clinical purposes. There is a need for a sensitive diagnostic test to detect multiple TMPRSS2–ERG fusion genes for an early diagnosis and prognosis of prostate cancer. Here, we propose to develop an assay for prostate cancer diagnosis using oligonucleotide-functionalized quantum dot and magnetic microparticle for optical detection of rearranged TMPRSS2–ERG fusion genes at a low concentration in urine. We found that our assay was able to identify three different types of fusion gene with a wide detection range and detection limit of 1 fmol (almost the same level of the RT-PCR result reported). Here, we show detection of multiple TMPRSS2–ERG fusion genes using color-coded oligonucleotides in cell lysate and urine.

Keywords: fusion genes, prostate cancer, quantum dots, multiplexed assay, optical detection

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]