Back to Journals » Nanotechnology, Science and Applications » Volume 7

Nanotechnology in agriculture: prospects and constraints

Authors Mukhopadhyay SS

Received 4 February 2014

Accepted for publication 8 May 2014

Published 4 August 2014 Volume 2014:7 Pages 63—71

DOI https://doi.org/10.2147/NSA.S39409

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2


Siddhartha S Mukhopadhyay

Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana, India

Abstract: Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with “miracle seeds”, in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone) and because their fate has to be conceived on the geosphere (pedosphere)-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers' field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and control of pests and diseases, understanding mechanisms of host-parasite interactions at the molecular level, development of new-generation pesticides and their carriers, preservation and packaging of food and food additives, strengthening of natural fibers, removal of contaminants from soil and water, improving the shelf-life of vegetables and flowers, clay-based nanoresources for precision water management, reclamation of salt-affected soils, and stabilization of erosion-prone surfaces, to name a few.

Keywords: clay minerals, crop production, crop protection, nanotechnology, nanocomposites, nanofabrication, nanotechnology, farming, food

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]