Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement

Authors Zhou X, Park S, Mao H, Isoshima T, Wang Y, Ito Y

Received 3 February 2015

Accepted for publication 29 April 2015

Published 2 September 2015 Volume 2015:10(1) Pages 5597—5607


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Xiaoyue Zhou,1,2,* Shin-Hye Park,1,* Hongli Mao,3 Takashi Isoshima,1 Yi Wang,2 Yoshihiro Ito1,3

1Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan; 2Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People’s Republic of China; 3Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan

*These authors contributed equally to this work

Abstract: Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

Keywords: phosphonated gelatin, surface modification, titanium, cell adhesion

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces

Yang X, Zhu L, Tada S, Zhou D, Kitajima T, Isoshima T, Yoshida Y, Nakamura M, Yan W, Ito Y

International Journal of Nanomedicine 2014, 9:2753-2765

Published Date: 29 May 2014

Positively charged cholesterol–recombinant human gelatins foster the cellular uptake of proteins and murine immune reactions

Kadengodlu PA, Hebishima T, Takeshima SN, Ito M, Liu M, Abe H, Aida Y, Aigaki T, Ito Y

International Journal of Nanomedicine 2012, 7:5437-5450

Published Date: 11 October 2012

Readers of this article also read:

pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

Yao Y, Su ZH, Liang YC, Zhang N

International Journal of Nanomedicine 2015, 10:6185-6198

Published Date: 1 October 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010