Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

Authors Wang X, Liu P, Yang W, Li L, Li P, Liu Z, Zhuo Z, Gao Y

Received 23 June 2014

Accepted for publication 3 September 2014

Published 23 October 2014 Volume 2014:9(1) Pages 4899—4909

DOI https://doi.org/10.2147/IJN.S69845

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Xiang Wang,1 Ping Liu,1 Weixiao Yang,1 Lu Li,1 Peijing Li,2 Zheng Liu,1 Zhongxiong Zhuo,1 Yunhua Gao1

1Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing, 2Department of Ultrasound, General Hospital of the Jinan Military Area, Jinan, People’s Republic of China


Abstract: Methotrexate (MTX) is the single most effective agent for the treatment of primary central nervous system lymphoma. Currently, the delivery of MTX to the brain is achieved by high systemic doses, which cause severe long-term neurotoxicity, or intrathecal administration, which is highly invasive and may lead to infections or hemorrhagic complications. Acoustically active microbubbles have been developed as drug carriers for the noninvasive and brain-targeted delivery of therapeutics. However, their application is limited by their low drug-loading capacity. To overcome this limitation, we prepared microbubbles coupled to MTX-loaded liposomes using ZHIFUXIAN, a novel type of microbubbles with a superior safety profile and long circulation time. MTX-liposome-coupled microbubbles had a high drug-loading capacity of 8.91%±0.86%, and their size (2.64±0.93 µm in diameter) was suitable for intravenous injection. When used with ultrasound, they showed more potent in vitro cytotoxicity against Walker-256 cancer cells than MTX alone or MTX-loaded liposomes. When Sprague-Dawley rats were exposed to sonication, administration of these MTX-liposome-coupled microbubbles via the tail vein led to targeted disruption of the blood–brain barrier without noticeable tissue or capillary damage. High-performance liquid chromatography analysis of the brain MTX concentration showed that MTX delivery to the brain followed the order of MTX-liposome-coupled microbubbles + ultrasound (25.3±2.4 µg/g) > unmodified ZHIFUXIAN + MTX + ultrasound (18.6±2.2 µg/g) > MTX alone (6.97±0.75 µg/g) > MTX-liposome-coupled microbubbles (2.92±0.39 µg/g). Therefore, treatment with MTX-liposome-coupled microbubbles and ultrasound resulted in a significantly higher brain MTX concentration than all other treatments (P<0.01). These results suggest that MTX-liposome-coupled microbubbles may hold great promise as new and effective therapies for primary central nervous system lymphoma and other central nervous system malignancies.

Keywords: methotrexate, microbubbles, ultrasound, liposomes, blood–brain barrier

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z, Zhuo Z, Xia H, Gao Y, Tan K

International Journal of Nanomedicine 2014, 9:5639-5651

Published Date: 3 December 2014

Readers of this article also read:

Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist – an initial in vitro study

Skopalik J, Polakova K, Havrdova M, Justan I, Magro M, Milde D, Knopfova L, Smarda J, Polakova H, Gabrielova E, Vianello F, Michalek J, Zboril R

International Journal of Nanomedicine 2014, 9:5355-5372

Published Date: 20 November 2014

Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer

Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS, Selting KA, Bryan JN, Henry CJ, Boote E, Tate DJ, Bryan ME, Katti KV, Kannan R

International Journal of Nanomedicine 2014, 9:5001-5011

Published Date: 28 October 2014

Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks

Shalaby KS, Soliman ME, Casettari L, Bonacucina G, Cespi M, Palmieri GF, Sammour OA, El Shamy AA

International Journal of Nanomedicine 2014, 9:4953-4964

Published Date: 23 October 2014

Neural stem cell-derived exosomes mediate viral entry

Sims B, Gu L, Krendelchtchikov A, Matthews QL

International Journal of Nanomedicine 2014, 9:4893-4897

Published Date: 21 October 2014

Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

Zaloga J, Janko C, Nowak J, Matuszak J, Knaup S, Eberbeck D, Tietze R, Unterweger H, Friedrich RP, Duerr S, Heimke-Brinck R, Baum E, Cicha I, Dörje F, Odenbach S, Lyer S, Lee G, Alexiou C

International Journal of Nanomedicine 2014, 9:4847-4866

Published Date: 20 October 2014

Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines

Mfouo-Tynga I, El-Hussein A, Abdel-Harith M, Abrahamse H

International Journal of Nanomedicine 2014, 9:3771-3780

Published Date: 8 August 2014

Ultrastructural localization of intravenously injected carbon nanohorns in tumor

Matsumura S, Yuge R, Sato S, Tomida A, Ichihashi T, Irie H, Iijima S, Shiba K, Yudasaka M

International Journal of Nanomedicine 2014, 9:3499-3508

Published Date: 23 July 2014

Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects

Nunes ADC, Ramalho LS, Souza APS, Mendes EP, Colugnati DB, Zufelato N, Sousa MH, Bakuzis AF, Castro CH

International Journal of Nanomedicine 2014, 9:3299-3312

Published Date: 8 July 2014

Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier

Sun Z, Worden M, Wroczynskyj Y, Yathindranath V, van Lierop J, Hegmann T, Miller DW

International Journal of Nanomedicine 2014, 9:3013-3026

Published Date: 20 June 2014