Back to Journals » International Journal of Nanomedicine » Volume 12

Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy

Authors Liu J, Huang L, Tian XM, Chen XM, Shao YZ, Xie FK, Chen DH, Li L

Received 4 August 2016

Accepted for publication 8 October 2016

Published 16 December 2016 Volume 2017:12 Pages 1—14


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Jun Liu,1,* Long Huang,2,3,* Xiumei Tian,4 Xiaoming Chen,4 Yuanzhi Shao,5 Fukang Xie,3 Dihu Chen,1 Li Li2

1School of Electronics and Information Technology and School of Physics, 2State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, 3Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, 4Department of Biomedical Engineering, Guangzhou Medical University, 5State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, People’s Republic of China

*These authors contributed equally to this work

Abstract: The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products can serve as good MRI contrast agents. The bright upconversion luminescence of the products allows their use as fluorescence nanoprobes for live cells imaging. We also utilized the luminescence-emission capability of the UCNs for the activation of a photosensitizer to achieve significant PDT results. To the best of our knowledge, this study is the first use of lanthanide-doped Gd2O3 UCNs in a theranostics application. This investigation provides a useful platform for the development of Gd2O3-based UCNs for clinical diagnosis, treatment, and imaging-guided therapy of cancer.

Keywords: upconversion nanoparticles, upconversion luminescence imaging, MR imaging, photodynamic therapy, singlet oxygen

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]