Back to Journals » International Journal of Nanomedicine » Volume 14

Hypoxia-active nanoparticles used in tumor theranostic

Authors Wang Y, Shang W, Niu M, Tian J, Xu K

Received 4 December 2018

Accepted for publication 4 April 2019

Published 22 May 2019 Volume 2019:14 Pages 3705—3722

DOI https://doi.org/10.2147/IJN.S196959

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Mian Wang


Yaqin Wang,1,2,* Wenting Shang,2,* Meng Niu,1 Jie Tian,2,3 Ke Xu1

1Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China; 2Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China; 3Institute of Medical Interdisciplinary Innovation, Beihang University, Beijing, 100080, People’s Republic of China

*These authors contributed equally to this work

Abstract:
Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.

Keywords: prodrug, tumor microenvironment, metal complex, bioreductive

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]