Back to Journals » Clinical Ophthalmology » Volume 12

Goldmann tonometry tear film error and partial correction with a shaped applanation surface

Authors McCafferty SJ, Enikov ET, Schwiegerling J, Ashley SM

Received 25 September 2017

Accepted for publication 30 November 2017

Published 4 January 2018 Volume 2018:12 Pages 71—78

DOI https://doi.org/10.2147/OPTH.S152492

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 3

Editor who approved publication: Dr Scott Fraser


Sean J McCafferty,1–4 Eniko T Enikov,5 Jim Schwiegerling,2,3 Sean M Ashley1,3

1Intuor Technologies, 2Department of Ophthalmology, University of Arizona College of Medicine, 3University of Arizona College of Optical Science, 4Arizona Eye Consultants, 5Department of Mechanical and Aerospace, University of Arizona College of Engineering, Tucson, AZ, USA

Purpose: The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism.
Methods: The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms.
Results: The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p<0.001). Tear film adhesion error was independent of applanation mire thickness (R2=0.09, p=0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p<0.001). Cadaver eye validation indicated the CATS prism’s tear film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p=0.002).
Conclusion: Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error by ~41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.

Keywords: glaucoma, intraocular pressure, IOP, Goldmann, bias, error, tonometer, applanation, tear film

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]