Back to Journals » Drug Design, Development and Therapy » Volume 9

Synthesis, antimicrobial and in vitro antitumor activities of a series of 1,2,3-thiadiazole and
1,2,3-selenadiazole derivatives

Authors Mhaidat N, Al-Smadi ML, Al-momani F, Alzoubi KH, Mansi I, Al-Balas Q

Received 3 April 2015

Accepted for publication 26 May 2015

Published 16 July 2015 Volume 2015:9 Pages 3645—3652

DOI https://doi.org/10.2147/DDDT.S86054

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Wei Duan


Nizar M Mhaidat,1,2 Mousa Al-Smadi,3 Fouad Al-Momani,4 Karem H Alzoubi,1 Iman Mansi,2 Qosay Al-Balas5

1Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 2Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, 3Department of Applied Chemical Sciences, 4Department of Applied Biological Sciences, Faculty of Science and Arts, 5Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan

Abstract:
Three derivatives of substituted 1,2,3-thia- or 1,2,3-selenadiazole (4a–c) were prepared and characterized by different chemical techniques. These compounds were evaluated for their antimicrobial and antitumor activities. Compounds 4a (propenoxide derivative), 4b (carbaldehyde derivative), and 4c (benzene derivative) were active against the yeast-like fungi Candida albicans. Compound 4a was active against gram-negative Escherichia coli, and compound 4c was active against the gram-positive Staphylococcus aureus. For the antitumor activity, both compounds 4b and 4c were active against all tested tumor cell lines, namely, SW480, HCT116, C32, MV3, HMT3522, and MCF-7. The activity of compound 4c was greater than that of compound 4b and more than that of the reference antitumor 5-flourouracil against the SW480, HCT116, and MCF-7 tumor cell lines. In conclusion, a number of the prepared 1,2,3-thia- or 1,2,3-selenadiazole compounds showed promising antifungal, antibacterial, and in vitro antitumor activities. Further investigations are required to explore the mechanism by which active compound are inducing their cytotoxicity.

Keywords: thiadiazole, selenadiazole, cell lines, antimicrobial activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]