Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Evaluation of renal quantitative T2* changes on MRI following administration of ferumoxytol as a T2* contrast agent

Authors

Hedgire SS, McDermott S, Wojtkiewicz GR, Abtahi SM, Harisinghani M, Gaglia JL

Received 28 January 2014

Accepted for publication 15 March 2014

Published 28 April 2014 Volume 2014:9(1) Pages 2101—2107

DOI https://doi.org/10.2147/IJN.S61460

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Sandeep S Hedgire,1 Shaunagh McDermott,1 Gregory R Wojtkiewicz,1 Seyed Mahdi Abtahi,1 Mukesh Harisinghani,1 Jason L Gaglia2

1Center for Systems Biology, Massachusetts General Hospital, Richard B Simches Research Center, 2Joslin Diabetes Center, Boston, MA, USA

Purpose: To evaluate the time-dependent changes in regional quantitative T2* maps of the kidney following intravenous administration of ferumoxytol.
Materials and methods: Twenty-four individuals with normal kidney function underwent T2*-weighted MRI of the kidney before, immediately after, and 48 hours after intravenous administration of ferumoxytol at a dose of 4 mg/kg (group A, n=12) or 6 mg/kg (group B, n=12). T2* values were statistically analyzed using two-tailed paired t-tests.
Results: In group A, the percentage changes from baseline to immediate post and baseline to 48 hours were 85.3% and 64.2% for the cortex and 90.8% and 64.6% for the medulla, respectively. In group B, the percentage changes from baseline to immediate post and baseline to 48 hours were 85.2% and 73.4% for the cortex and 94.5% and 74% for the medulla, respectively. This difference was significant for both groups (P<0.0001).
Conclusion: There is significant and differential uptake of ferumoxytol in the cortex and medulla of physiologically normal kidneys. This differential uptake may offer the ability to interrogate renal cortex and medulla with possible clinical applications in medical renal disease and transplant organ assessment. We propose an organ of interest based dose titration of ferumoxytol to better differentiate circulating from intracellular ferumoxytol particles.

Keywords: USPIO, ferumoxytol, renal MRI, T2* weighted imaging

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Predicting frequent COPD exacerbations using primary care data

Kerkhof M, Freeman D, Jones R, Chisholm A, Price DB

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:2439-2450

Published Date: 9 November 2015

Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles [Corrigendum]

Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, Naadja SE, Webster TJ, Taufiq-Yap YH

International Journal of Nanomedicine 2015, 10:6657-6658

Published Date: 28 October 2015

Nanopharmaceuticals (part 1): products on the market

Weissig V, Pettinger TK, Murdock N

International Journal of Nanomedicine 2014, 9:4357-4373

Published Date: 15 September 2014

Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

Nocerino N, Fulgione A, Iannaccone M, Tomasetta L, Ianniello F, Martora F, Lelli M, Roveri N, Capuano F, Capparelli R

International Journal of Nanomedicine 2014, 9:1175-1184

Published Date: 5 March 2014

The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles

Gao H, Liu J, Yang C, Cheng T, Chu L, Xu H, Meng A, Fan S, Shi L, Liu J

International Journal of Nanomedicine 2013, 8:4229-4246

Published Date: 5 November 2013

Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study

Li CW, Fu RQ, Yu CP, Li ZH, Guan HY, Hu DQ, Zhao DH, Lu LC

International Journal of Nanomedicine 2013, 8:4131-4145

Published Date: 1 November 2013

Preparation and evaluation of polymeric microparticulates for improving cellular uptake of gemcitabine

Lim JH, You SK, Baek JS, Hwang CJ, Na YG, Shin SC, Cho CW

International Journal of Nanomedicine 2012, 7:2307-2314

Published Date: 7 May 2012

Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector

Ebrahim Azizi, Alireza Namazi, Ismaeil Haririan, et al

International Journal of Nanomedicine 2010, 5:455-461

Published Date: 29 June 2010

Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

Trung D Tran, Shelton D Caruthers, Michael Hughes, John N Marsh, Tillmann Cyrus, et al

International Journal of Nanomedicine 2007, 2:515-526

Published Date: 15 January 2008