Back to Journals » International Journal of Nanomedicine » Volume 6

Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells

Authors Karmakar, Braton, Dervishi, Ghosh, Mahmood, Xu Y, Saeed, Mustafa, Casciano D, Radominska-Pandya, Biris AS

Published 18 May 2011 Volume 2011:6 Pages 1045—1055

DOI https://doi.org/10.2147/IJN.S17684

Review by Single anonymous peer review

Peer reviewer comments 2



Alokita Karmakar2, Stacie M Bratton1, Enkeleda Dervishi2, Anindya Ghosh3, Meena Mahmood2, Yang Xu2, Lamya Mohammed Saeed2, Thikra Mustafa2, Dan Casciano2, Anna Radominska-Pandya1, Alexandru S Biris2
1
Biochemistry Department, University of Arkansas for Medical Sciences; 2Nanotechnology Center, Applied Science Department; 3Department of Chemistry, University of Arkansas, Little Rock, AR, USA

Abstract: A gene delivery concept based on ethylenediamine-functionalized single-walled carbon nanotubes (f-SWCNTs) using the oncogene suppressor p53 gene as a model gene was successfully tested in vitro in MCF-7 breast cancer cells. The f-SWCNTs-p53 complexes were introduced into the cell medium at a concentration of 20 µg mL-1 and cells were exposed for 24, 48, and 72 hours. Standard ethidium bromide and acridine orange assays were used to detect apoptotic cells and indicated that a significantly larger percentage of the cells (approx 40%) were dead after 72 hours of exposure to f-SWCNTs-p53 as compared to the control cells, which were exposed to only p53 or f-SWCNTs, respectively. To further support the uptake and expression of the genes within the cells, green fluorescent protein-tagged p53, attached to the f-SWCNTs was added to the medium and the complex was observed to be strongly expressed in the cells. Moreover, caspase 3 activity was found to be highly enhanced in cells incubated with the f-SWCNTs-p53 complex, indicating strongly induced apoptosis. This system could be the foundation for novel gene delivery platforms based on the unique structural and morphological properties of multi-functional nanomaterials.

Keywords: carbon nanotubes, gene delivery, cancer cells, p53 oncogene suppressor

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.