Back to Browse Journals » International Journal of High Throughput Screening » Volume 2

Drug discovery in Parkinson's disease: update and developments in the use of cellular models

Authors Skibinski G, Finkbeiner S

Published 30 June 2011 Volume 2011:2 Pages 15—25

DOI https://doi.org/10.2147/IJHTS.S8681

Review by Single-blind

Peer reviewer comments 3

Gaia Skibinski, Steven Finkbeiner
Gladstone Institute of Neurological Disease, San Francisco, CA, USA

Abstract: Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons within the substantia nigra. Dopamine replacement drugs remain the most effective treatment for Parkinson's disease but only provide temporary symptomatic relief. New therapies are urgently needed, but the search for a disease-modifying treatment and a definitive understanding of the underlying mechanisms of Parkinson's disease has been limited by the lack of physiologically relevant models that recapitulate the disease phenotype. The use of immortalized cell lines as in vitro model systems for drug discovery has met with limited success, because efficacy and safety too often fail to translate successfully in human clinical trials. Drug discoverers are shifting their focus to more physiologically relevant cellular models, including primary neurons and stem cells. The recent discovery of induced pluripotent stem cell technology presents an exciting opportunity to derive human dopaminergic neurons from patients with sporadic and familial forms of Parkinson's disease. We anticipate that these human dopaminergic models will recapitulate key features of the Parkinson's disease phenotype. In parallel, high-content screening platforms, which extract information on multiple cellular features within individual neurons, provide a network-based approach that can resolve temporal and spatial relationships underlying mechanisms of neurodegeneration and drug perturbations. These emerging technologies have the potential to establish highly predictive cellular models that could bring about a desperately needed revolution in Parkinson's disease drug discovery.

Keywords: Parkinson's disease, cellular models, drug delivery
Corrigendum

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Other article by this author:

Corrigendum

Skibinski G, Finkbeiner S

International Journal of High Throughput Screening 2011, 2:27-28

Published Date: 22 September 2011

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Current and developing therapeutic agents in the treatment of Chagas disease

Werner Apt

Drug Design, Development and Therapy 2010, 4:243-253

Published Date: 17 September 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010