Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Distribution of β-carotene-encapsulated polysorbate 80-coated poly(D, L-lactide-co-glycolide) nanoparticles in rodent tissues following intravenous administration

Authors Miyazawa T, Nakagawa K, Harigae T, Onuma R, Kimura F, Fujii T, Miyazawa T

Received 13 August 2015

Accepted for publication 7 October 2015

Published 27 November 2015 Volume 2015:10(1) Pages 7223—7230


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Lakshmi Kiran Chelluri

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster

Taiki Miyazawa,1,2 Kiyotaka Nakagawa,1,2 Takahiro Harigae,2 Ryo Onuma,2 Fumiko Kimura,2 Tomoyuki Fujii,3 Teruo Miyazawa4,5

1Vascular Biology Laboratory, Jean Mayer USDA (United States Department of Agriculture)-Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; 2Food and Biodynamic Chemistry Laboratory, 3Terahertz Optical & Food Engineering Laboratory, Graduate School of Agricultural Science, 4Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), 5Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

Purpose: Biodegradable nanoparticles (NPs) composed of poly(D, L-lactide-co-glycolide) (PLGA) have attracted considerable attention as delivery systems of drugs and antioxidative compounds, such as β-carotene (BC). Intravenous (IV) administration of BC-containing PLGA-NPs (BC-PLGA-NPs) coated with polysorbate 80 (PS80) has been shown to effectively deliver BC to the brain. However, the whole-body distribution profile of BC is still not clear. Therefore, we investigated the accumulation of BC in various organs, including the brain, following IV administration of PS80-coated BC-PLGA-NPs in rats.
Methods: PS80-coated and uncoated BC-PLGA-NPs were prepared by solvent evaporation, and administered intravenously to Sprague Dawley rats at a BC dose of 8.5 mg/rat. Accumulation of BC in various organs (brain, heart, liver, lungs, and spleen) and blood plasma was evaluated by high performance liquid chromatography with ultraviolet (UV) detection, 1 hour after administration.
Results: We prepared PS80-coated BC-PLGA-NPs with an entrapment efficiency of 14%, a particle size of 260 nm, and a zeta potential of -26 mV. Coating with PS80 was found to result in significant accumulation of BC in the lungs, rather than in the brain and other tissues. Further, plasma levels of BC in the PS80-coated BC-PLGA-NP group were much lower than those of the uncoated BC-PLGA-NP group.
Conclusion: Following IV administration, PS80-coated BC-PLGA-NPs are quickly transferred from plasma circulation to the lungs, rather than the brain. Significant accumulation of BC in the lungs may be useful for health-related applications.

Keywords: β-carotene, intravenous administration, nanoparticles, poly(D, L-lactide-co-glycolide) (PLGA), polysorbate 80 (PS80), tissue distribution

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration

Harigae T, Nakagawa K, Miyazawa T, Inoue N, Kimura F, Ikeda I, Miyazawa T

International Journal of Nanomedicine 2016, 11:3009-3022

Published Date: 28 June 2016

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010