Back to Journals » Virus Adaptation and Treatment » Volume 2

Development of FGI-106 as a broad-spectrum therapeutic with activity against members of the family Bunyaviridae

Authors Smith DR, Ogg M, Garrison A, Yunus A, Honko A, Johnson J, Olinger G, Hensley LE, Kinch M

Published 26 February 2010 Volume 2010:2 Pages 9—20

DOI https://doi.org/10.2147/VAAT.S6903

Review by Single-blind

Peer reviewer comments 4

Darci R Smith1, Monica Ogg1, Aura Garrison1, Abdul Yunus2, Anna Honko1, Josh Johnson1, Gene Olinger1, Lisa E Hensley1, Michael S Kinch

1United States Army Medical Research Institute of Infectious Diseases (USAMRII D), Fort Detrick, MD, USA; 2Functional Genetics, Inc., Gaithersburg, MD, USA

Abstract: The family Bunyaviridae is a diverse group of negative-strand RNA viruses that infect a wide range of arthropod vectors and animal hosts. Based on the continuing need for new therapeutics to treat bunyavirus infections, we evaluated the potential efficacy of FGI-106, a small-molecular compound that previously demonstrated activity against different RNA viruses. FGI-106 displayed substantial antiviral activity in cell-based assays of different bunyavirus family members, including Asian and South American hantaviruses (Hantaan virus and Andes virus), Crimean-Congo hemorrhagic fever virus, La Crosse virus, and Rift Valley fever virus. The pharmacokinetic profile of FGI-106 revealed sufficient exposure of the drug to critical target organs (lung, liver, kidney, and spleen), which are frequently the sites of bunyavirus replication. Consistent with these findings, FGI-106 treatment delivered via intraperitoneal injection prior to virus exposure was sufficient to delay the onset of Rift Valley fever virus infection in mouse-based models and to enhance survival in the face of an otherwise lethal infection. Altogether, these results suggest a potential opportunity for the use of FGI-106 to treat infections by members of the family Bunyaviridae.
Keywords: Rift Valley fever virus, bunyavirus, hantavirus, antiviral, therapeutic

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Other article by this author:

Antibody targeting of TSG101 on influenza-infected cells

Aurelio Bonavia, Leyla S Diaz, David Santos, et al

Virus Adaptation and Treatment 2010, 2:147-157

Published Date: 9 November 2010

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Corrigendum

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010