Back to Journals » Research and Reports in Biochemistry » Volume 5

Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update

Authors Hendrickson M, Poyton R

Received 10 January 2015

Accepted for publication 6 March 2015

Published 18 June 2015 Volume 2015:5 Pages 147—161


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Professor Nikolay Dokholyan

Marina D Hendrickson, Robert O Poyton

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA

Abstract: Hypoxia-inducible factor-1 (HIF-1) is responsible for cellular adaptations to hypoxia. While oxygen (O2) negatively regulates its stability, many other factors affect HIF-1 stability and activity, including nitric oxide (NO). NO derived from l-arginine and nitrite (NO2) could nitrosylate or nitrate HIF-1 and multiple proteins involved in HIF-1 regulation, and can allow HIF-1 to escape normoxic degradation. In turn, HIF-1 can increase NO production through multiple mechanisms, including increased inducible nitric oxide synthase (iNOS) expression and subunit 4-2 of cytochrome c oxidase (COX4-2) expression. There is therefore a high degree of crosstalk between HIF-1 and NO signaling. As such, many cellular responses to NO are mediated by HIF-1, and vice versa. This includes, but is not limited to, angiogenesis, apoptosis, senescence, and metabolic changes. These pathways all have important functions in normal physiology and when altered can contribute or, in some cases, lead to pathogenesis.

Keywords: HIF, nitric oxide, Cco/NO mitochondrial signaling, ROS/RNS, cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Management of acute attacks of hereditary angioedema: role of ecallantide

Duffey H, Firszt R

Journal of Blood Medicine 2015, 6:115-123

Published Date: 16 April 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

The clinical psychologist and the management of inpatient pain: a small case series

Childs SR, Casely EM, Kuehler BM, Ward S, Halmshaw CL, Thomas SE, Goodall ID, Bantel C

Neuropsychiatric Disease and Treatment 2014, 10:2291-2297

Published Date: 2 December 2014

Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia

Vlcek P, Bob P, Raboch J

Neuropsychiatric Disease and Treatment 2014, 10:1309-1315

Published Date: 14 July 2014

Fluorescence resonance energy transfer-based real-time polymerase chain reaction method without DNA extraction for the genotyping of F5, F2, F12, MTHFR, and HFE

Martinez-Serra J, Robles J, Nicolàs A, Gutierrez A, Ros T, Amat JC, Alemany R, Vögler O, Abelló A, Noguera A, Besalduch J

Journal of Blood Medicine 2014, 5:99-106

Published Date: 25 June 2014

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012