Back to Journals » International Journal of Nanomedicine » Volume 14

Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia–reperfusion injury

Authors Wang W, Liu H, Lu YT, Wang X, Zhang B, Cong S, Zhao Y, Ji M, Tao H, Wei L

Received 3 September 2018

Accepted for publication 30 November 2018

Published 30 January 2019 Volume 2019:14 Pages 875—888


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Wenshuo Wang,1,* Huan Liu,1,* Yuntao Lu,1,* Xiaole Wang,2,* Bohan Zhang,3 Shuo Cong,1 Yun Zhao,1 Minbiao Ji,3 Hongyue Tao,4 Lai Wei1,5

1Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China; 2Department of Radiology, Second People’s Hospital of Nantong City, Nantong 226002, Jiangsu, China; 3State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; 4Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200040, China; 5Department of Cardiac Surgery, Shanghai Public Health Clincal Center, Shanghai 201508, China

*These authors contributed equally to this work

Background: Hydrogen sulfide (H2S) has shown promising therapeutic benefits in reversing a variety of pathophysiological processes in cardiovascular system, including myocardial ischemia–reperfusion (IR) injury. However, the achievement of controlled and sustained release of H2S has been a technical bottleneck that limits the clinical application of the gas molecule.
Methods: The current study describes the development of mesoporous iron oxide nanoparticles (MIONs) which were loaded with diallyl trisulfide (DATS), a H2S donor compound, and calibrated by stimulated Raman scattering/transient absorption.
Results: The synthesized MIONs were characterized with excellent mesoporosity and a narrow size distribution, which enabled them to slow down the release of H2S to a suitable rate and prolong the plateau period. The controlled-release feature of DATS-MIONs resulted in little adverse effect both in vitro and in vivo, and their protective effect on the heart tissue that underwent IR injury was observed in the mouse model of myocardial ischemia. The rapid biodegradation of DATS-MIONs was induced by Kupffer cells, which were specialized macrophages located in the liver and caused limited hepatic metabolic burden.
Conclusion: The sustained-release pattern and excellent biocompatibility make DATS-MIONs a promising H2S donor for research and medical purposes.

Keywords: steady release, porous structure, biocompatibility, biodegeneration

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]