Back to Journals » International Journal of High Throughput Screening » Volume 1

Computational characterization of SAR microenvironments in high-throughput screening data

Authors Wawer M, Sun S, Bajorath J

Published 1 April 2010 Volume 2010:1 Pages 15—27


Review by Single-blind

Peer reviewer comments 4

Mathias Wawer*, Su Sun*, Jürgen Bajorath

Department of Life Science Informatics, Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany; *These authors have contributed equally to this work.

Purpose: A computational approach is described to analyze structure–activity relationship (SAR) information contained in compound and screening data sets. The methodology is designed to explore SAR information in a systematic and compound-centric manner in order to aid in the selection of hits from high-throughput screening (HTS) data.

Methods: Chemical neighborhood graphs integrate a graphical representation of the chemical environment of each active compound in a data set with the potency distribution within its neighborhood and information from a quantitative SAR analysis function. Environments are systematically generated and ranked by SAR information content. From these environments, key compounds and compound series can be selected.

Results: The methodology is described in detail. In addition, the application to four screening data sets is reported, revealing different SAR characteristics. A number of different examples of compound environments are presented and discussed that have varying SAR information content.

Conclusion: Chemical neighborhood graphs provide an intuitive graphical access to SAR information contained in hit sets. SAR information is analyzed in a compound-centric manner, with a focus on local SAR environments (microenvironments). It is anticipated that this approach will complement and help to further refine current hit selection strategies and trigger the development of additional graphical analysis methods to search for SAR information in HTS data.

Keywords: screening data sets, hit selection, computational analysis, graphical representation, structure–activity relationship information

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 


Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010