Back to Journals » Medical Devices: Evidence and Research » Volume 12

Comparative Analysis of Color Matching System for Teeth Recognition Using Color Moment

Authors Justiawan, Wahjuningrum DA, Hadi RP, Nurhayati AP, Prayogo K, Sigit R, Arief Z

Received 17 September 2019

Accepted for publication 22 November 2019

Published 30 December 2019 Volume 2019:12 Pages 497—504

DOI https://doi.org/10.2147/MDER.S224280

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser


Video abstract of 'Color matching system for teeth recognition using color moment' [ID 224280].

Views: 150

Justiawan,1 Dian Agustin Wahjuningrum,2 Ratna Puspita Hadi,2 Adienda Pajar Nurhayati,2 Kevin Prayogo,2 Riyanto Sigit,3 Zainal Arief4

1Department of Research and Development, Tione Indonesia Jaya, Surabaya 60111, Indonesia; 2Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; 3Department of Informatic Engineering, Magister Program of Engineering Technology, Electronic Engineering Polytechnic Institute of Surabaya, Surabaya, Indonesia; 4Department of Electrical Engineering, Magister Program of Engineering Technology, Electronic Engineering Polytechnic Institute of Surabaya, Surabaya, Indonesia

Correspondence: Dian Agustin Wahjuningrum
Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Mayjen Prof. Dr. Moestopo 47, Surabaya, East Java 60131, Indonesia
Tel +62 315030252
Fax +62 315022472
Email dian-agustin-w@fkg.unair.ac.id

Background: In recent years, veritable image processing systems have been developed for several field applications, some of which are recognition and classification. One such application is in the medical field for teeth color matching systems. The color matching technique is a feasible solution for classifying patients’ teeth images to evaluate the suitable treatment of tooth replacement in dentistry. However the lighting conditions of the environment and visual teeth color deficiency will be influenced or affected by the color matching performance.
Methods: This paper proposes the comparative analysis of a color matching system, using K-nearest neighbors (KNN), neural network (NN), and decision tree (DT) algorithms to classify and recognize 16 types of dental images of persons that used several extracted features, from shade guide of teeth, with a digital camera, ranging from 250–300 lux lighting value. The extracted features are produced from RGB, HSV, and Lab color moment characteristic calculation of tooth samples. Those features were compared with input images using euclidean distance value.
Results: KNN algorithm in RGB characteristic achieves 97.5% within only a 0.02 second computation time.
Conclusion: KNN algorithm in RGB characteristic provides the best performance when compared to the other approaches.

Keywords: KNN algorithm, teeth recognition, color matching, color moment

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]